15-17-2 ⓔ文献

  1. Hasegawa T: Ultrastructure and biological function of matrix vesicles in bone mineralization. Histochem Cell Biol, 2018; 149: 289–304.

  2. 日本内分泌学会,日本骨代謝学会,他:ビタミンD不足・欠乏の判定指針.日本内分泌学会雑誌,2017; 93: 1–10.

  3. Hughes MR, Malloy PJ, et al: Point mutations in the human vitamin D receptor gene associated with hypocalcemic rickets. Science, 1988; 242: 1702–1705.

  4. Kitanaka S, Takeyama K, et al: Inactivating mutations in the 25–hydroxyvitamin D3 1α–hydroxylase gene in patients with pseudovitamin D–deficiency rickets. N Engl J Med, 1998; 338: 653–661.

  5. Bergwitz C, Roslin NM, et al: SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium–phosphate cotransporter NaPi–IIc in maintaining phosphate homeostasis. Am J Hum Genet, 2006; 78: 179–192.

  6. Lorenz–Depiereux B, Benet–Pages A, et al: Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium–phosphate cotransporter gene SLC34A3. Am J Hum Genet, 2006; 78: 193-201.

  7. Lloyd SE, Pearce SH, et al: A common molecular basis for three inherited kidney stone diseases. Nature, 1996; 379: 445–449.

  8. Shimada T, Hasegawa H, et al: FGF–23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res, 2004; 19: 429–435.

  9. Fukumoto S: Targeting fibroblast growth factor 23 signaling with antibodies and inhibitors, is There a rationale? Front Endocrinol (Lausanne), 2018; 9: 48.

  10. Weiss MJ, Cole DE, et al: A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc Natl Acad Sci U S A, 1988; 85: 7666–7669.

  11. Kubota T, Nakayama H, et al: Incidence rate and characteristics of symptomatic vitamin D deficiency in children: a nationwide survey in Japan. Endocr J, 2018; 65: 593–599.

  12. Endo I, Fukumoto S, et al: Nationwide survey of fibroblast growth factor 23 (FGF23)–related hypophosphatemic diseases in Japan: prevalence, biochemical data and treatment. Endocr J, 2015; 62: 811–816.

  13. Sabbagh Y, Carpenter TO, et al: Hypophosphatemia leads to rickets by impairing caspase–mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci U S A, 2005; 102: 9637–9642.

  14. Walton RJ, Bijvoet OL: Nomogram for derivation of renal threshold phosphate concentration. Lancet, 1975; 2: 309–310.

  15. Endo I, Fukumoto S, et al: Clinical usefulness of measurement of fibroblast growth factor 23 (FGF23) in hypophosphatemic patients: proposal of diagnostic criteria using FGF23 measurement. Bone, 2008; 42: 1235–1239.

  16. 日本内分泌学会,日本骨代謝学会,他:くる病・骨軟化症の診断マニュアル.日本内分泌学会雑誌,2015; 91: 1–11.

  17. Kinoshita Y, Fukumoto S: X–linked hypophosphatemia and FGF23–related hypophosphatemic diseases: prospect for new treatment. Endocr Rev, 2018; 39: 274–291.

  18. Tieder M, Modai D, et al: Hereditary hypophosphatemic rickets with hypercalciuria. N Engl J Med, 1985; 312: 611–617.

  19. Minisola S, Peacock M, et al: Tumour–induced osteomalacia. Nat Rev Dis Primers, 2017; 3: 17044.

  20. Carpenter TO, Imel EA, et al: A clinician’s guide to X–linked hypophosphatemia. J Bone Miner Res, 2011; 26: 1381–1388.

  21. Carpenter TO, Whyte MP, et al: Burosumab Therapy in Children with X–Linked Hypophosphatemia. N Engl J Med, 2018; 378: 1987–1998.

  22. Whyte MP, Greenberg CR, et al: Enzyme–replacement therapy in life–threatening hypophosphatasia. N Engl J Med, 2012; 366: 904–913.