15-5-3 ⓔ文献
Juppner H, Abou–Samra AB, et al: A G protein–linked receptor for parathyroid hormone and parathyroid hormone–related peptide. Science, 1991; 254: 1024–1026.
Suda T, Takahashi N, et al: Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev, 1999; 20: 345–357.
Aslan D, Andersen MD, et al: Mechanisms for the bone anabolic effect of parathyroid hormone treatment in humans. Scand J Clin Lab Invest, 2012; 72: 14–22.
Henry HL: Regulation of vitamin D metabolism. Best Pract Res Clin Endocrinol Metab, 2011; 25: 531–541.
Levi M, Gratton E: Visualizing the regulation of SLC34 proteins at the apical membrane. Pflugers Arch, 2019; 471: 533–542.
Bezerra CN, Girardi AC, et al: Mechanisms underlying the long–term regulation of NHE3 by parathyroid hormone. Am J Physiol Renal Physiol, 2008; 294: F1232–1237.
de Groot T, Lee K, et al: Parathyroid hormone activates TRPV5 via PKA-dependent phosphorylation. J Am Soc Nephrol, 2009; 20: 1693–1704.
Orlov I, Rochel N, et al: Structure of the full human RXR/VDR nuclear receptor heterodimer complex with its DR3 target DNA. EMBO J, 2012; 31: 291–300.
van de Graaf SF, Boullart I, et al: Regulation of the epithelial Ca2+ channels TRPV5 and TRPV6 by 1alpha, 25–dihydroxy vitamin D3 and dietary Ca2+. J Steroid Biochem Mol Biol, 2004; 89–90: 303–308.
Kido S, Kaneko I, et al: Vitamin D and type II sodium–dependent phosphate cotransporters. Contrib Nephrol, 2013; 180: 86–97.
Hoenderop JG, Dardenne O, et al: Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25–dihydroxyvitamin D3 in 25-hydroxyvitamin D3–1alpha–hydroxylase knockout mice. FASEB J, 2002; 16: 1398–1406.
Liu SM, Koszewski N, et al: Characterization of a response element in the 5'–flanking region of the avian (chicken) PTH gene that mediates negative regulation of gene transcription by 1,25–dihydroxyvitamin D3 and binds the vitamin D3 receptor. Mol Endocrinol, 1996; 10: 206–215.
Takasu H, Sugita A, et al: c–Fos protein as a target of anti–osteoclastogenic action of vitamin D, and synthesis of new analogs. J Clin Invest, 2006; 116: 528–535.
日本内分泌学会,日本骨代謝学会,他:ビタミンD不足・欠乏の判定指針.日本内分泌学会雑誌, 2017; 93: 1–10.
Urakawa I, Yamazaki Y, et al: Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature, 2006; 444: 770–774.
Shimada T, Hasegawa H, et al: FGF–23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res, 2004; 19: 429–435.
Ben–Dov IZ, Galitzer H, et al: The parathyroid is a target organ for FGF23 in rats. J Clin Invest, 2007; 117: 4003–4008.
Lin HY, Harris TL, et al: Expression cloning of an adenylate cyclase–coupled calcitonin receptor. Science, 1991; 254: 1022–1024.