17-9-10 ⓔ文献
Patel AB, Franzini A, et al: JAK2ex13InDel drives oncogenic transformation and is associated with chronic eosinophilic leukemia and polycythemia vera. Blood, 2019; 134: 2388–2398.
Vainchenker W, Kralovics R: Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood, 2017; 129: 667–679.
Tefferi A, Guglielmelli P, et al: Long–term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood, 2014; 124: 2507–2513.
Hultcrantz M, Kristinsson SY, et al: Patterns of survival among patients with myeloproliferative neoplasms diagnosed in Sweden from 1973 to 2008: a population–based study. J Clin Oncol, 2012; 30: 2995–3001.
Tefferi A, Rumi E, et al: Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia, 2013; 27: 1874–1881.
Dan K, Yamada T, et al: Clinical features of polycythemia vera and essential thrombocythemia in Japan: retrospective analysis of a nationwide survey by the Japanese Elderly Leukemia and Lymphoma Study Group. Int J Hematol, 2006; 83: 443–449.
Marchioli R, Finazzi G, et al: Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol, 2005; 23: 2224–2232.
Harrison C, Kiladjian JJ, et al: JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med, 2012; 366: 787–798.
Verstovsek S, Mesa RA, et al: A double–blind, placebo–controlled trial of ruxolitinib for myelofibrosis. N Engl J Med, 2012; 366: 799–807.
Passamonti F, Griesshammer M, et al: Ruxolitinib for the treatment of inadequately controlled polycythaemia vera without splenomegaly (RESPONSE–2): a randomised, open–label, phase 3b study. Lancet Oncol, 2017; 18: 88–99.
Heinz G, Oleh Z, et al: Ropeginterferon alfa–2b, a novel IFNα–2b, induces high response rates with low toxicity in patients with polycythemia vera. Blood, 2015; 126: 1762–1769.