7-3-4-5 ⓔ文献
Podschun R, Ullmann U: Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev, 1998; 11: 589–603.
Tindall BJ, Sutton G, et al: Enterobacter aerogenes Hormaeche and Edwards 1960 (Approved Lists 1980) and Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) share the same nomenclatural type (ATCC 13048) on the Approved Lists and are homotypic synonyms, with consequences for the name Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980). Int J Syst Evol Microbiol, 2017; 67: 502–504.
厚生労働省院内感染対策サーベイランス検査部門公開情報2018年1月〜12月年報.https://janis.mhlw.go.jp/report/open_report/2018/3/1/ken_Open_Report_201800.pdf
Richens J: The diagnosis and treatment of donovanosis (granuloma inguinale). Genitourin Med, 1991; 67: 441–452.
O’Farrell N: Clinico-epidemiological study of donovanosis in Durban, South Africa. Genitourin Med, 1993; 69: 108–111.
Kumar B, Sahoo B, et al: Rising incidence of genital herpes over two decades in a sexually transmitted disease clinic in North India. J Dermatol, 2000; 29: 74–78.
Mackay IM, Harnett G, et al: Detection and discrimination of herpes simplex viruses, Haemophilus ducreyi, Treponema pallidum, and Calymmatobacterium (Klebsiella) granulomatis from genital ulcers. Clin Infect Dis, 2006; 42: 1431–1438.
Yeh KM, Kurup A, et al: Capsular serotype K1 or K2, rather than magA and rmpA, is a major virulence determinant for Klebsiella pneumoniae liver abscess in Singapore and Taiwan. J Clin Microbiol, 2006; 45: 466–471.
Minami I, Okabe A, et al: Production of a unique cytotoxin by Klebsiella oxytoca. Microb Pathog, l989; 7: 203–211.
Hogenauer C, Langner C, et al: Klebsiella oxytoca as a causative organism of antibiotic-associated hemorrhagic colitis. N Engl J Med, 2006; 355: 2418–2426.
Sweetser S, Schroeder KW, et al: Pseudomembranous colitis secondary to Klebsiella oxytoca. Am J Gastroenterol, 2009 ; 104: 2366–2368.
日本環境感染学会多剤耐性菌感染制御委員会:多剤耐性グラム陰性菌感染制御におけるポジションペーパー第2版.環境感染, 2017; 32: S1-S25.http://www.kankyokansen.org/uploads/uploads/files/jsipc/position-%20paper (2).pdf
Guidance for control of infections with carbapenem–resistant or carbapenemase–producing Enterobacteriaceae in acute care facilities :MMWR, 2009; 58: 256–260.
Tumbarello M, Spanu T, et al: Bloodstream infections caused by extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae: risk factors, molecular epidemiology, and clinical outcome. Antimicrob Agents Chemother, 2006; 50: 498–504.
Ben-David D, Kordevani R, et al: Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. Clin Microbiol Infect, 2012; 18: 54–60.
Doi A, Shimada T, et al: The efficacy of cefmetazole against pyelonephritis caused by extended-spectrum beta–lactamase–producing Enterobacteriaceae. Int J Infect Dis, 2013; 17: e159–e163.
Nakamura T, Komatsu M, et al: Susceptibility of various oral antibacterial agents against extended spectrum β–lactamase producing Escherichia coli and Klebsiella pneumoniae. J Infect Chemother, 2014; 20: 48–51.
国立感染症研究所厚生労働省健康局結核感染症課 病原微生物検出情報 (IASR).Vol.35No12 (No.418).http://www0.nih.go.jp/niid/idsc/iasr/35/418j.pdf
Nordmann P, Naas T, et al: Global spread of carbapenemase–producing Enterobacteriaceae. Emerg Infect Dis, 2011; 17:1791–1798.
Fukigai S, Alba J, et al: Nosocomial outbreak of genetically related IMP–1 beta–lactamase–producing Klebsiella pneumoniae in a general hospital in Japan. Int J Antimicrob Agents, 2007; 29: 306–310.
Yano H, Kuga A, et al: Plasmid–encoded metallo–beta–lactamase (IMP–6) conferring resistance to carbapenems, especially meropenem.Antimicrob Agents Chemother, 2001; 45: 1343–1348.
Saito K, Nakano R, et al: Suitability of carbapenem inactivation method (CIM) for detection of IMP metallo–β–lactamase-producing Enterobacteriaceae. J Clin Microbiol, 2017; 55: 1220–1222.
Yamamoto N, Asada R, et al: Prevalence of, and risk factors for, carriage of carbapenem–resistant Enterobacteriaceae among hospitalized patients in Japan. J Hosp Infect, 2017; 97: 212–217.