8-5-5 ⓔ文献

  1. 日本循環器学会:慢性冠動脈疾患診断ガイドライン2018年改訂版.http://www.j-circ.or.jp/guideline/pdf/JCS2018_yamagishi_tamaki.pdf

  2. Gupta NC, Esterbrooks DJ, et al: Comparison of adenosine and exercise thallium–201 single–photon emission computed tomography (SPECT) myocardial perfusion imaging. The GE SPECT Multicenter AdenosineStudy Group. J Am Coll Cardiol, 1992; 19: 248–257.

  3. 坂田泰史,西村恒彦,他:SUNY4001 (アデノシン) 負荷201Tl心筋シンチグラフィの虚血検出に関する検討―労作性狭心症を対象とした第II相試験.核医学,2004; 41: 123–132.

  4. Henzlova MJ, Duvall WL, et al: ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers. J Nucl Cardiol, 2016; 23: 606–639.

  5. Berman DS, Abidov A, et al: Prognostic validation of a 17–segment score derived from a 20–segment score for myocardial perfusion SPECT interpretation. J Nucl Cardiol, 2004; 11: 414–423.

  6. Nakata T, Hashimoto A, et al: Prognostic value of automated SPECT scoring system for coronary artery disease in stress myocardial perfusion and fatty acid metabolism imaging. Int J Cardiovasc Imaging, 2013; 29: 253–262.

  7. Yoda S, Hori Y, et al: Correlation between early revascularization and major cardiac events demonstrated by ischemic myocardium in Japanese patients with stable coronary artery disease. J Cardiol, 2018: 71: 44–51.

  8. Tanaka R, Nakamura T: Time course evaluation of myocardial perfusion after reperfusion therapy by 99mTc–tetrofosmin SPECT in patients with acute myocardial infarction. J Nucl Med, 2001; 42: 1351–1358.

  9. Germano G, Kavanagh PB, et al: Quantitation in gated perfusion SPECT imaging: the Cedars–Sinai approach. J Nucl Cardiol, 2007; 14: 433–454.

  10. Zamorano JL, Lancellotti P, et al: 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J, 2016; 37: 2768–2801.

  11. Usui Y, Chikamori T, et al: J–ACCESS Investigators. Prognostic value of post-ischemic stunning as assessed by gated myocardial perfusion single-photon emission computed tomography: a subanalysis of the J–ACCESS study. Circ J, 2010; 74: 1591–1599.

  12. Liu CJ, Wu YW, et al: Incremental diagnostic performance of combined parameters in the detection of severe coronary artery disease using exercise gated myocardial perfusion imaging. PLos One, 2015; 10: e0134485.

  13. Momose M, Nakajima K, et al: Prognostic significance of stress myocardial gated SPECT among Japanese patients referred for coronary angiography: A study of data from the J–ACCESS database. Eur J Nucl Med Mol Imaging, 2009; 36: 1329–1337.

  14. Higgins JP, Williams G, et al: Left bundle–branch block artifact on single photon emission computed tomography with technetium Tc 99 m (Tc–99 m) agents: mechanisms and a method to decrease false–positive interpretations. Am Heart J, 2006; 152: 619–626.

  15. Heijenbrok–Kal MH, Fleischmann KE, et al: Stress echocardiography, stress single–photon–emission computed tomography and electron beam computed tomography for the assessment of coronary artery disease: a meta–analysis of diagnostic performance. Am Heart J, 2007; 154: 415–423.

  16. de Jong MC, Genders TS, et al: Diagnostic performance of stress myocardial perfusion imaging for coronary artery disease: a systematic review and meta–analysis. Eur Radiol, 2012; 22: 1881–1895.

  17. Neglia D, Rovai D, et al: EVINCI Study Investigators. Detection of significant coronary artery disease by noninvasive anatomical and functional imaging. Circ Cardiovasc Imaging, 2015; 8: e002179.

  18. Danad I, Szymonifka J, et al: Diagnostic performance of cardiac imaging methods to diagnose ischaemia–causing coronary artery disease when directly compared with fractional flow reserve as a reference standard: a meta–analysis. Eur Heart J, 2017; 38: 991–998.

  19. Aarnoudse WH, Botman KJ, et al: False–negative myocardial scintigraphy in balanced three–vessel disease, revealed by coronary pressure measurement. Int J Cardiovasc Intervent, 2003; 5: 67–71.

  20. Fiechter M, Ghadri JR, et al: Diagnostic value of 13N–ammonia myocardial perfusion PET: added value of myocardial flow reserve. J Nucl Med, 2012; 53: 1230–1234.

  21. Ziadi MC, Dekemp RA, et al: Does quantification of myocardial flow reserve using rubidium–82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol, 2012; 19: 670–680.

  22. Rispler S, Keidar Z, et al: Integrated single–photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J Am Coll Cardiol, 2007; 49: 1059–1067.

  23. Nishimura T, Nakajima K, et al: Prognostic study of risk stratification among Japanese patients with ischemic heart disease using gated myocardial perfusion SPECT: J–ACCESS study. Eur J Nucl Med Mol Imaging, 2008; 35: 319–328.

  24. Tsai JP, Yun CH, et al: A meta–analysis comparing SPECT with PET for the assessment of myocardial viability in patients with coronary artery disease. Nucl Med Commun, 2014; 35: 947–954.

  25. Wemer RA, Chen X, et al: Moving into the next era of PET myocardial perfusion imaging: introduction of novel 18F-labeled tracers. Int J Cardiovasc Imaging, 2019; 35: 569–577.

  26. Stanley WC, Recchia FA, et al: Myocardial substrate metabolism in the normal and failing heart. Physiol Rev, 2005; 85: 1093–1129.

  27. Neely JR, Rovetto MJ, et al: Myocardial utilization of carbohydrate and lipids. Prog Cardiovasc Dis, 1972; 15: 289–329.

  28. Liedtke AJ: Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis, 1981; 23: 321–336.

  29. Wisneski JA, Stanley WC, et al: Effects of acute hyperglycemia on myocardial glycolytic activity in humans. J Clin Invest, 1990; 85: 1648–1656.

  30. Tanaka T, Okamoto F, et al: Lack of myocardial iodine-123 15–(p–iodophenyl)–3–R, S–methylpentadecanoic acid (BMIPP) uptake and CD36 abnormality—CD36 deficiency and hypertrophic cardiomyopathy. Jpn Circ J, 1997; 61: 724–725.

  31. Knapp FF Jr, Ambrose KR, et al: New radioiodinated methyl-branched fatty acids for cardiac studies. Eur J Nucl Med, 1986; 12 Suppl: S39–S44.

  32. Schwaiger M, Schelbert HR, et al: Sustained regional abnormalities in cardiac metabolism after transient ischemia in chronic dog model. J Am Coll Cardiol, 1985; 6: 336–347.

  33. Ito K, Sugihara H, et al: Dynamic changes in cardiac fatty acid metabolism in the stunned human myocardium. Ann Nucl Med, 2001; 15: 343–350.

  34. 中田智明,飯村 攻:虚血性心疾患における123I-BMIPP心筋シンチグラフィーの有用性―特にsalvage効果とTl/BMIPP集積乖離について―.核医学,1994; 31: 664.

  35. Dilsizian V, Bateman TM: Metabolic imaging with beta-methyl–p–[123I]–iodophenyl–pentadecanoic acid identifies ischemic memory after demand ischemia. Circulation, 2005; 112: 2169–2174.

  36. Yoneyama K, Akashi YJ, et al: Metabolic planar imaging using 123I–β–methyl–iodophenyl pentadecanoic acid identifies myocardial ischemic memory after intracoronary acetylcholine provocation tests in patients with vasospastic angina. Int Heart J, 2014; 55: 113–118.

  37. Brogsitter C, Grüning T, et al: 18F–FDG PET for detecting myocardial viability: validation of 3D data acquisition. J Nucl Med, 2005; 46: 19–24.

  38. Cornel JH, Bax JJ, et al: Agreement and disagreement between “metabolic viability”and “contractile reserve” in akinetic myocardium. J Nucl Cardiol, 1999; 6: 383–388.

  39. Kim SJ, Pak K, et al: Diagnostic performance of F–18 FDG PET for detection of cardiac sarcoidosis: a systematic review and meta–analysis. J Nucl Cardiol, 2020; 27: 2103–2115.

  40. 日本循環器学会:心臓サルコイドーシスの診療ガイドライン2016年版.http://www.j-circ.or.jp/guideline/pdf/JCS2016_terasaki_h.pdf

  41. Abgral R, Dweck MR, et al: Clinical utility of combined FDG-PET/MR to assess myocardial disease. JACC Cardiovasc Imaging, 2017; 10: 594–597.

  42. Wicks EC, Menezes LJ, et al: Diagnostic accuracy and prognostic value of simultaneous hybrid 18F–fluorodeoxyglucose positron emission tomography/magnetic resonance imaging in cardiac sarcoidosis. Eur Heart J Cardiovasc Imaging, 2018; 19: 757–767.

  43. Tobes MC, Jaques S Jr, et al: Effect of uptake-one inhibitors on the uptake of norepinephrine and metaiodobenzylguanidine. J Nucl Med, 1985; 26: 897–907.

  44. Wieland DM, Brown LE, et al: Imaging the primate adrenal medulla with [123I] and [131I] meta–iodobenzylguanidine: concise communication. J Nucl Med, 1981; 22: 358–364.

  45. Wieland DM, Brown LE, et al: Myocardial imaging with a radioiodinated norepinephrine storage analog. J Nucl Med, 1981; 22: 22–31.

  46. 菅澤惠子:123I–MIBG心筋シンチグラフィーによるパーキンソン病および関連疾患の鑑別.Equilibrium Res, 2013; 72: 112–115.

  47. Agostini D, Verbene HJ, et al: I–123–mIBG myocardial imaging for assessment of risk for a major cardiac event in heart failure patients: insights from a retrospective European multicenter study. Eur J Nucl Med Mol Imaging, 2008; 35: 535–546.

  48. Imamura Y, Ando H, et al: Iodine–123 metaiodobenzyl–guanidine images reflect intense myocardial adrenergic nervous activity in congestive heart failure independent of underlying cause. J Am Coll Cardiol, 1995; 26: 1594–1599.

  49. Nakajima K, Nakata T: Cardiac 123I–MIBG imaging for clinical decision making: 22–year experience in Japan. J Nucl Med, 2015; 56: Supplement 4 11S–19S

  50. 日本循環器学会:急性・慢性心不全診療ガイドライン2017年改訂版.http://www.j-circ.or.jp/jhfs/guideline/pdf/JCS2017_tsutsui_d.pdf

  51. De Marco T, Dae M, et al: Iodine–123 metaiodobenzylguanidine scintigraphic assessment of the transplanted human heart: evidence for late reinnervation. J Am Coll Cardiol, 1995; 25: 927–931.