文献

最終更新日:2024年10月11日

mite

 第1章  第2章  第3章  第4章  第5章  第6章
 第7章  第8章  第9章  第10章  付録(分類表)

第1章 Q&A

明石 弘 (1908)「蠶桑害蟲篇」. 明文堂書店.

岸田久吉 (1927) 桑葉の害蜱カンザワハダニに就きて. 動物學雑誌, 39: 105–107.

横山桐郎 (1932) 桑を害する葉蜱の研究 (1) 「すぎなみはだに」Tetranychus Suginamensis n. sp.の形態並に生態. 蠶業試驗場報告, 8: 229–297.

 

第2章 分類と系統進化

安倍 弘ほか (2009) ダニ亜綱の高次分類群に対する和名の提案, 日本ダニ学会誌, 18: 99–104. doi: 10.2300/acari.18.99

Arabuli, T. and Gotoh, T. (2018) A new species of spider mite, Oligonychus neocastaneae sp. nov. (Acari: Tetranychidae), from Japan. Zootaxa, 4378: 563–572. doi: 10.11646/zootaxa.4378.4.7

Arabuli, T. et al. (2019) Revision of the genus Pseudobryobia McGregor, 1950 (Acari, Tetranychidae). Acarologia, 59: 291300. doi: 10.24349/acarologia/20194331

Arimoto, M. et al. (2013) PCR-RFLP analysis for identification of Tetranychus spider mite species (Acari: Tetranychidae). J. Econ. Entomol., 106: 661668. doi: 10.1603/EC12440

Auger, P. et al. (2013) Evidence for synonymy between Tetranychus urticae and Tetranychus cinnabarinus (Acari, Prostigmata, Tetranychidae): Review and new data. Acarologia, 53: 383415. doi: 10.1051/acarologia/20132102

Baker, E. W. and Tuttle, D. M. (1987) The false spider mites of Mexico (Tenuipalpidae: Acari). United States Department of Agriculture, Agricultural Research Service, Technical Bulletin, 1706: 1236. doi: 10.22004/ag.econ.309599

Baker, E. W. and Tuttle, D. M. (1994) A Guide to the Spider Mites (Tetranychidae) of the United States. Indira Publishing House.

Beard, J. J. et al. (2024) The six-spotted spider mite, Eotetranychus sexmaculatus (Riley) (Trombidiformes: Tetranychidae) in Australia, New Zealand, Japan and USA: A revised morphological and molecular-based concept, synonyms, and related species. Zootaxa, 5432: 349378. doi: 10.11646/zootaxa.5432.3.2

Ben-David, T. et al. (2007) ITS2 sequences as barcodes for identifying and analyzing spider mites (Acari: Tetranychidae). Exp. Appl. Acarol., 41: 169181. doi: 10.1007/s10493-007-9058-1

Bolland, H. R. et al. (1998) World Catalogue of the Spider Mite Family (Acari: Tetranychidae). Brill Academic Publishers.

Castro, E. B. et al. (2023) A new species of Ultratenuipalpus (Acari: Tenuipalpidae) from Brazil and re-description of Ultratenuipalpus meekeri (De Leon), the type species of the genus, with DNA barcodes. Animals, 13: 1838. doi: 10.3390/ani13111838

Castro, E. B. et al. (2024) Tenuipalpidae Database. http://www.tenuipalpidae.ibilce.unesp.br (2024-8-7閲覧)

Coineau, Y. (1974) Éléments pour une monographie morphologique, écologique et biologique des Caeculidae (Acariens). Mem. Mus. Nat. Hist. Natur., n.s. A, Zool., 81. Muséum national dHistoire naturelle, Paris.

Dowling, A. P. G. et al. (2012) Phylogenetic investigation of the genus Raoiella (Prostigmata:: Tenuipalpidae): diversity, distribution, and world invasions. Exp. Appl. Acarol., 57: 257269. doi: 10.1007/s10493-011-9483-z

Dupont, L. M. (1979) On gene flow between Tetranychus urticae Koch, 1836 and Tetranychus cinnabarinus (Boisduval) Boudreaux, 1956 (Acari: Tetranychidae). Entomol. Exp. Appl., 25: 297303. doi: 10.1111/j.1570-7458.1979.tb02882.x

Ehara, S. (1956a) Some spider mites from northern Japan. J. Fac. Sci., Hokkaido Univ.,ser. 6, Zool., 12: 244258.

Ehara, S. (1956b) Two false spider mites from Japanese orchards (Phytoptipalpidae). Annot. Zool. Japon., 29: 234238. doi:10.34434/za001001

Ehara, S. (1962) Tetranychoid mites of conifers in Hokkaido. J. Fac. Sci., Hokkaido Univ.,ser. 6, Zool., 15: 157175.

Ehara, S. (1966) The tetranychoid mites of Okinawa Island (Acarina: Prostigmata). J. Fac. Sci., Hokkaido Univ.,ser. 6, Zool., 16: 122.

江原昭三 (1975a) 形態. 「農業ダニ学」(江原昭三・真梶徳純編). pp. 2554, 全国農村教育協会.

江原昭三 (1975b) 分類. 「農業ダニ学」(江原昭三・真梶徳純編). pp. 55132, 全国農村教育協会.

Ehara, S. (1980) Two species of spider mites from Japan (Acarina: Tetranychidae). Annot. Zool. Japon., 53: 202209. doi: 10.34434/za001786

Ehara, S. (1982) Two new species of false spider mites (Acarina, Tenuipalpidae) from Japan. Annot. Zool. Japon., 55: 175179. doi: 10.34434/za001847

江原昭三 (1996) ハダニ類・分類. 「植物ダニ学」(江原昭三・真梶徳純編). pp. 3981, 全国農村教育協会.

Ehara, S. (1999) Revision of the spider mite family Tetranychidae of Japan (Acari, Prostigmata). Spec. Div., 4: 63141. doi: 10.12782/specdiv.4.63

江原昭三 (2009) ヒメハダニ科およびケナガハダニ科の概説と同定. 「原色植物ダニ検索図鑑」(江原昭三・後藤哲雄編). pp. 223229, 全国農村教育協会.

江原昭三・後藤哲雄 (2007) ハダニ科の見分け方. 植物防疫, 特別増刊号 (No.10): 333.

江原昭三・後藤哲雄 (2009) ハダニ科の概説と同定. 「原色植物ダニ検索図鑑」(江原昭三・後藤哲雄編). pp. 204222, 全国農村教育協会.

江原昭三・與儀喜代政 (1998) 沖縄本島でパパイヤなどから発見されたEutetranychus orientalis (トウヨウハダニ) について. 植物防疫, 52: 530533.

Goka, K. et al. (1996) Genetic distinctness between two forms of Tetranychus urticae Koch (Acari: Tetranychidae) detected by electrophoresis. Exp. Appl. Acarol., 20: 683693. doi: 10.1007/BF00051553

Gotoh, T. and Arabuli, T. (2019) New species of the genus Eotetranychus (Acari, Prostigmata, Tetranychidae) from Japan. Zootaxa, 4555: 001027. doi: 10.11646/zootaxa.4555.1.1

Gotoh, T. and Tokioka, T. (1996) Genetic compatibility among diapausing red, non-diapausing red and diapausing green forms of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Jpn. J. Entomol., 64: 215225.

Grandjean, F. (1969) Stases. Actinopiline. Rappel de ma classification des Acariens en 3 groupes majeurs. Terminologie en soma. Acarologia, 11: 796827.

Gutierrez, J. (1985) Systematics. In: Spider Mites. Their Biology, Natural Enemies and Control. Volume 1A (Helle, W. and Sabelis, M. W. eds.). pp. 7590, Elsevier.

Hao, D. J. et al. (2016) Morphological and genetic characteristics of Brevipalpus lewisi (Acari: Tenuipalpidae) and comparison with other three Brevipalpus species. Int. J. Acarol., 42: 3440. doi: 10.1080/01647954.2015.1114022

Hinomoto, N. and Takafuji, A. (2001) Genetic diversity and phylogeny of the Kanzawa spider mite, Tetranychus kanzawai, in Japan. Exp. Appl. Acarol., 25: 355370. doi: 10.1023/A:1017934218898

Hinomoto, N. et al. (2001) Phylogenetic analysis of green and red forms of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), in Japan, based on mitochondrial cytochrome oxidase subunit I sequences. Appl. Entomol. Zool., 36: 459464. doi: 10.1303/aez.2001.459

Hinomoto, N. et al. (2007) Identification of spider mites (Acari: Tetranychidae) through DNA sequences: A case study in northern Vietnam. Int. J. Acarol., 33: 5360. doi: 10.1080/01647950708684501

Huo, S.-M. et al. (2021) Comparative genome and transcriptome analyses reveal innate differences in response to host plants by two color forms of the two-spotted spider mite Tetranychus urticae. BMC Genom., 22: 569. doi: 10.1186/s12864-021-07894-7

Jeppson, L. R. et al. (1975) Mites Injurious to Economic Plants. University of California Press.

Klimov, P. B. et al. (2018) Comprehensive phylogeny of acariform mites (Acariformes) provides insights on the origin of the four-legged mites (Eriophyoidea), a long branch. Mol. Phylogenetics Evol., 119: 105117. doi: 10.1016/j.ympev.2017.10.017

Krantz, G. W. and Walter, D. E. eds. (2009) A Manual of Acarology. 3rd ed. Texas Tech University Press.

Lindquist, E. E. (1985) External anatomy. In: Spider Mites. Their Biology, Natural Enemies and Control. Volume 1A (Helle, W. and Sabelis, M. W. eds.). pp. 328. Elsevier.

Lindquist, E. E. (1998) Evolution of phytophagy in trombidiform mites. Exp. Appl. Acarol., 22: 81100. doi: 10.1023/A:1006041609774

Matsuda, T. et al. (2013) DNA-based identification of spider mites: Molecular evidence for cryptic species of the genus Tetranychus (Acari: Tetranychidae). J. Econ. Entomol., 106: 463472. doi: 10.1603/ec12328

Matsuda, T. et al. (2014) Phylogenetic analysis of the spider mite sub-family Tetranychinae (Acari: Tetranychidae) based on the mitochondrial COI gene and the 18S and the 5' End of the 28S rRNA genes indicates that several genera are polyphyletic. PLOS ONE, 9: e108672. doi: 10.1371/journal.pone.0108672

Matsuda, T. et al. (2018) Phylogeny of the spider mite sub-family Tetranychinae (Acari: Tetranychidae) inferred from RNA-Seq data. PLOS ONE, 13: e0203136. doi: 10.1371/journal.pone.0203136

McGregor, E. A. (1950) Mites of the family Tetranychidae. Amer. Midi. Nat., 44: 257420. doi: 10.2307/2421963

Mesa, N. C. et al. (2009) A catalog of the Tenuipalpidae (Acari) of the World with a key to genera. Zootaxa, 2098: 1185. doi: 10.11646/zootaxa.2098.1.1

Meyer, M. K. P. S. (1987) African Tetranychidae (Acari: Prostigmata) with reference to the world genera. Entomology Memoir, Department of Agriculture and Water Supply, Republic of South Africa, No. 69.

Migeon, A. and Dorkeld, F. (2023) Spider Mites Web: A comprehensive database for the Tetranychidae. https://www1.montpellier.inrae.fr/CBGP/spmweb (2023-11-27閲覧)

Migeon, A. and Dorkeld, F. (2024) Spider Mites Web: A comprehensive database for the Tetranychidae. https://www1.montpellier.inra.fr/CBGP/spmweb (2024-8-7閲覧)

Migeon, A. et al. (2010) Spider Mites Web: A comprehensive database for the Tetranychidae. In: Trends in Acarology (Sabelis, M. W. and Bruin, J. eds.). pp. 557560, Springer.

Navajas, M. et al. (1992) Molecular approach in spider mites (Acari: Tetranychidae): Preliminary data on ribosomal DNA sequences. Exp. Appl. Acarol., 15: 211218. doi: 10.1007/BF01246563

Navajas, M. et al. (1996) Mitochondrial cytochrome oxidase I in tetranychid mites: a comparison between molecular phylogeny and changes of morphological and life history traits. Bull. Entomol. Res., 86: 407417. doi: 10.1017/S0007485300034994

Navajas, M. et al. (1997) Convergence of molecular and morphological data reveals phylogenetic information on Tetranychus species and allows the restoration of the genus Amphitetranychus (Acari: Tetranychidae). Bull. Entomol. Res., 87: 283288. doi: 10.1017/S0007485300037238

Negm, M. W. and Gotoh, T. (2021) Redescription of Panonychus caglei Mellott, 1968, with ontogenetic development. Zootaxa, 5086: 157173. doi: 10.11646/zootaxa.5086.1.11

Negm, M. W. et al. (2020) A new species of Cenopalpus Pritchard & Baker (Acari: Tenuipalpidae) from Japan with ontogeny of chaetotaxy and a key to the world species. PeerJ, 8: e9081. doi: 10.7717/peerj.9081

Ohashi, K. et al. (2009) The occurrence of Schizotetranychus baltazari Rimando (Acari: Tetranychidae) in Japan. J. Acarol. Soc. Jpn., 18: 2931. doi: 10.2300/acari.18.29

Osakabe, M. et al. (2008) Restriction fragment length polymorphism catalog for molecular identification of Japanese Tetranychus spider mites (Acari: Tetranychidae). J. Econ. Entomol., 101: 11671175. doi: 10.1603/0022-0493(2008)101[1167:RFLPCF]2.0.CO;2

Pepato, A. R. et al. (2022) One-way ticket to the blue: A large-scale, dated phylogeny revealed asymmetric land-to-water transitions in acariform mites (Acari: Acariformes). Mol. Phylogenetics Evol., 177: 107626. doi: 10.1016/j.ympev.2022.107626

Pritchard, A. E. and Baker, E. W. (1955) A revision of the spider mites family Tetranychidae. Pacific Coast Entomological Society Memoirs Series, 2: 1472. doi: 10.5962/bhl.title.150852

Pritchard, A. E. and Baker, E. W. (1958) The false spider mites (Acarina: Tenuipalpidae). Univ. Calif. Publ. Entomol.,14: 175274.

齋藤 裕 (2018) スゴモリハダニ類 (ダニ目: ハダニ科) の生物学. 日本応用動物昆虫学会誌, 62: 215229. doi: 10.1303/jjaez.2018.215

Saito, Y. et al. (2004) Reinstatement of the genus Stigmaeopsis Banks, with descriptions of two new species (Acari, Tetranychidae). Ann. Entomol. Soc. Am., 97: 635646. doi: 10.1603/0013-8746(2004)097[0635:ROTGSB]2.0.CO;2

Saito, Y. et al. (2016) Two new species and four new life types in Tetranychidae. Ann. Entomol. Soc. Am., 109: 463472. doi: 10.1093/aesa/sav158

Saito, Y. et al. (2018) Description of two new species of Stigmaeopsis, Banks 1917 (Acari, Tetranychidae) inhabiting Miscanthus grasses (Poaceae). Acarologia, 58: 414429. doi: 10.24349/acarologia/20184250

Sakagami, T. et al. (2009) Molecular phylogeny of Stigmaeopsis, with special reference to speciation through host plant shift. Ann. Entomol. Soc. Am., 102: 360366. doi: 10.1603/008.102.0303

Sakamoto, H. et al. (2017) Molecular identification of seven species of the genus Stigmaeopsis (Acari: Tetranychidae) and preliminary attempts to establish their phylogenetic relationship. Syst. Appl. Acarol., 22: 91101. doi: 10.11158/saa.22.1.10

Seeman, O. D. and Beard, J. J. (2011) Identification of exotic pest and Australian native and naturalized species of Tetranychus (Acari: Tetranychidae). Zootaxa, 2961: 172. doi: 10.11646/zootaxa.2961.1.1

芝 実 (2015) ケダニ亜目. 「日本産土壌動物 第二版: 分類のための図解検索」(青木淳一編). pp. 201313, 東海大学出版会.

島野智之 (2018)(総説)ダニ類の高次分類体系の改訂について—高次分類群の一部和名改称. 日本ダニ学会誌, 27: 5168. doi: 10.1017/S0007485300034994

島野智之・高久 元 (2016) ダニの身体各部の名称. 「ダニのはなし—人間との関わり」(島野智之・高久 元編). p.vii, 朝倉書店.

Sugasawa, J. et al. (2002) Hybrid affinities between the green and the red forms of the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae) under laboratory and semi-natural conditions. Appl. Entomol. Zool., 37: 127139. doi: 10.1303/aez.2002.127

Toda, S. et al. (2000) Interspecific diversity of mitochondrial COI sequences in Japanese Panonychus species (Acari: Tetranychidae). Exp. Appl. Acarol., 24: 821829. doi: 10.1023/A:1006484018547

van der Hammen, L. (1963) The addition of segments during the postembryonic ontogenesis of the Actinotrichida (Acarida) and its importance for the recognition of the primary subdivision of the body and the original segmentation. Acarologia, 5: 443454.

Walter, D. E. and Proctor, H. C. (2013) Mites: Ecology, Evolution & Behavior Life at a Microscale. 2nd edition. Springer.

Walter, D. E. et al. (2009) Order Trombidiformes. In: A manual of Acarology third edition (Krantz, G. W. and Walter, D. E. eds.). pp. 233420, Texas Tech University Press.

Zhang, Z.-Q. (2003) Mites of Greenhouses: Identification, Biology and Control. CABI Publishing.

Zhang, Z.-Q. et al. (2011) Order Trombidiformes Reuter, 1909. In: Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Zhang, Z.-Q. ed.). Zootaxa, 3148: 129138. doi: 10.11646/zootaxa.3148.1.24

Zhang, Z.-Q. (2013) Phylum Arthropoda. In: Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013)(Zhang, Z.-Q. ed.). Zootaxa, 3703: 1726, Magnolia Press. doi: 10.11646/zootaxa.3703.1.6

 

第3章 形態

Akai, H. (1983) The structure and ultrastructure of the silk gland. Experientia, 39: 443449. doi: 10.1007/BF01965158

Alberti, G. and Coons, L. B. (1999) Acari - Mites. In: Microscopic Anatomy of Invertebrates 8e(Harrison, E. W. ed.). pp. 5151265, Wiley-Liss.

Alberti, G. and Crooker, A. R. (1985) Internal anatomy. In: Spider Mites. Their Biology, Natural Enemies and Control. Volume 1A (Helle, W. and Sabelis, M. W. eds.). pp. 2962, Elsevier.

Alberti, G., and Storch, V. (1974) Über bau und funktion der prosoma-drüsen von spinnmilben (Tetranychidae, Trombidiformes). Zeitschrift für Morphologie der Tiere, 79: 133153. doi: 10.1007/BF00298779

André, H. M. and Remacle, C. (1984) Comparative and functional morphology of the gnathosoma of Tetranychus urticae (Acari: Tetranychidae). Acarologia, 25: 179190. doi: 10.3389/fpls.2016.01105

Arrese, E. L. and Soulages, J. L. (2010) Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol., 55: 207225. doi: 10.1146/annurev-ento-112408-085356

Beard, J. J. et al. (2012) External mouthpart morphology in the Tenuipalpidae (Tetranychoidea): Raoiella a case study. Exp. Appl. Acarol., 57: 227255. doi: 10.1007/s10493-012-9540-2

Beard, J. J. et al. (2015) Flat mites of the world. https://idtools.org/tools/1074/index.cfm (2024-1-11閲覧)

Ben-Shahar, Y. (2011). Sensory functions for degenerin/epithelial sodium channels (DEG/ENaC). Adv. Genet., 76: 126. doi: 10.1016/B978-0-12-386481-9.00001-8

Bensoussan, N. et al. (2016) Plant-herbivore interaction: Dissection of the cellular pattern of Tetranychus urticae feeding on the host plant. Front. Plant Sci., 7: 1105. doi: 10.3389/fpls.2016.01105

Bensoussan, N. et al. (2018) The digestive system of the two-spotted spider mite, Tetranychus urticae Koch, in the context of the mite-plant interaction. Front. Plant Sci., 9: 1206. doi: 10.3389/fpls.2018.01206

Blauvelt, W. E. (1945) The internal morphology of the common red spider mite (Tetranychus telarius Linn.). The internal morphology of the common red spider mite (Tetranychus telarius Linn.), (270), 141.

Bolton, S. J. (2022) Proteonematalycus wagneri Kethley reveals where the opisthosoma begins in acariform mites. PLOS ONE, 17: e0264358. doi: 10.1371/journal.pone.0264358

Bostanian, N. J. and Morrison, F. O. (1973). Morphology and ultrastructure of sense organs in the twospotted spider mite (Acarina: Tetranychidae). Ann. Entomol. Soc. Am., 66: 379383. doi: 10.1093/aesa/66.2.379

Boudreaux, H. B. (1956) Revision of the two-spotted spider mite (Acarina, Tetranychidae) complex, Tetranychus telarius (Linnaeus). Ann. Entomol. Soc. Am., 49: 4348. doi: 10.1093/aesa/49.1.43

Boudreaux, H. B. (1958) The effect of relative humidity on egg-laying, hatching, and survival in various spider mites. J. Insect Physiol., 2: 6572. doi: 10.1016/0022-1910(58)90029-5

Chipman, A. D. et al. (2014). The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima. PLOS Biol., 12: e1002005. doi: 10.1371/journal.pbio.1002005

Crooker, A. R. (1981). Internal Morphology and Morphological Observation of the Sperm Path in the Adult Female Twospotted Spider Mite Tetranychus Urticae Koch (Acarina: Tetranychidae). Washington State University.

De Rouck, S. et al. (2024) SYNCAS: Efficient CRISPR/Cas9 gene-editing in difficult to transform arthropods. Insect Biochem. Mol. Biol., 165: 104068. doi: 10.1016/j.ibmb.2023.104068

Dermauw, W. et al. (2020) Targeted mutagenesis using CRISPR-Cas9 in the chelicerate herbivore Tetranychus urticae. Insect Biochem. Mol. Biol., 120: 103347. doi: 10.1016/j.ibmb.2020.103347

Dittrich, V. (1971) Electron-microscopic studies of the respiratory mechanism of spider mite eggs. Ann. Entomol. Soc. Am., 64: 11341143. doi: 10.1093/aesa/64.5.1134

江原昭三 (1975) 形態. 「農業ダニ学」(江原昭三・真梶徳純編). pp. 2554, 全国農村教育協会.

江原昭三 (1980) ダニ類概説. 「日本ダニ類図鑑」. pp. 491510, 全国農村教育協会.

江原昭三 (1996) 形態. 「植物ダニ学」(江原昭三・真梶徳純編). pp. 2138, 全国農村教育協会.

江原昭三・後藤哲雄 (2004) 植物防疫基礎講座 ハダニ類の見分け方 (1) ハダニ科の概説と和名改訂. 植物防疫, 58: 320324.

江原昭三・真梶徳純編 (1996) 「植物ダニ学」. 全国農村教育協会.

Evans, G. O. (1992a) Methods of sperm transfer, mating behaviour and oviposition. In: Principles of Acarology. pp. 299333, CAB International.

Evans, G. O. (1992b) Principle of Acarology, CAB International.

Evans, G. O. (1992c) Respiratory systems. In: Principles of Acarology. pp. 96129, CAB International.

Feiertag-Koppen, C. C. M. and Pijnacker, L. P. (1982) Development of the female germ cells and process of internal fertilization in the two-spotted spider mite Tetranychus urticae Koch (Acariformes: Tetranychidae). Int. J. Insect Morphol. Embryol., 11: 271284. doi: 10.1016/0020-7322(82)90016-2

Feiertag-Koppen, C. C. M. and Pijnacker, L. P. (1985) Oogenesis. In: Spider Mites. Their Biology, Natural Enemies and Control. Volume 1A (Helle, W. and Sabelis, M. W. eds.). pp. 117127, Elsevier.

Gerson, U. (2008) The Tenuipalpidae: An under-explored family of plant-feeding mites. Syst. Appl. Acarol., 13: 83101. doi: 10.11158/saa.13.2.1

後藤慎介・遠藤 淳 (2015) ナミハダニの光周性機構. 比較生理生化学, 32: 109117. doi: 10.3330/hikakuseiriseika.32.109

Grandjean, F. (1935) Observations sur les Acariens (1er série). Bulletin du Muséum National d’Histoire Naturelle Série 3 Zoologie, 7: 119126.

Grandjean, F. (1941) La chaetotaxie compareé des pattes chez les oribates (1re série), Bull. Soc. Zool. France, 66: 3350.

Grandjean, F. (1943) Les trichobothries pédieuses des Acariens et leur priorité chez les Bdelles. C. R. Séances Soc. Phys. Hist. Nat. Genève, 60: 241246.

Grandjean, F. (1948) Quelques caractères des Tétranyques. Bull. Mus. Natl. Hist. Nat. Zool., 20: 517524.

Grandjean, F. (1969) Stases. Actinopiline. Rappel de ma classification des Acariens en 3 groupes majeurs. Terminologie en soma. Acarologia, 11: 796827.

Grbić, M. et al. (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 479: 487492. doi: 10.1038/nature10640

Gutierrez, J. (1985) Systematics. In: Spider Mites. Their Biology, Natural Enemies and Control. Volume 1A(Helle, W. and Sabelis, M. W. eds.), pp. 7590, Elsevier.

Hamdi, F. A. et al. (2023) An octopamine receptor involved in feeding behavior of the two-spotted spider mite, Tetranychus urticae Koch: A possible candidate for RNAi-based pest control. Entomol. Gen., 43: 8997.

Hartmann, K, et al. (2016) Development of the synganglion and morphology of the adult nervous system in the mite Archegozetes longisetosus Aoki (Chelicerata, Actinotrichida, Oribatida). J. Morphol., 277: 537548. doi: 10.1002/jmor.20517

Hislop, R. G. and Jeppson, L. R. (1976) Morphology of the mouthparts of several species of phytophagous mites. Ann. Entomol. Soc. Am., 69: 11251135. doi: 10.1093/aesa/69.6.1125

Hori, Y. et al. (2014) Both the anterior and posterior eyes function as photoreceptors for photoperiodic termination of diapause in the two-spotted spider mite. J. Comp. Physiol. A, 200: 161167. doi: 10.1007/s00359-013-0872-0

Jonckheere, W. et al. (2016) The salivary protein repertoire of the polyphagous spider mite Tetranychus urticae: A quest for effectors. Mol. Cell. Proteom., 15: 35943613. doi: 10.1074/mcp.M116.058081

Klompen, H. et al. (2015) Post-embryonic development in the mite suborder Opilioacarida, with notes on segmental homology in Parasitiformes (Arachnida). Exp. Appl. Acarol., 67: 183207. doi: 10.1007/s10493-015-9939-7

Kobayashi, T. et al. (2020) A unique primary structure of RDL (resistant to dieldrin) confers resistance to GABA-gated chloride channel blockers in the two-spotted spider mite Tetranychus urticae Koch. J. Neurochem., 155: 508521. doi: 10.1111/jnc.15179

Krantz, G. W. (2009) Form and function. In: A Manual of Acarology, 3rd edition(Krantz, G. W. and Walter, D. E. eds.). pp. 553, Texas Tech University Press.

桑原保正 (1990) コナダニ類の化学生態学. 日本農芸化学会誌, 64: 17541757. doi: 10.1271/nogeikagaku1924.64.1754

Leal, W. S. et al. (1989) β-acaridial, the sex pheromone of the acarid mite Caloglyphus polyphyllae: Pheromone study of acarid mites, XXI [1]. Naturwissenschaften, 76: 332333. doi: 10.1007/BF00368436

Lindquist, E. E. (1985) External anatomy. In: Spider Mites. Their Biology, Natural Enemies and Control. Volume 1A (Helle, W. and Sabelis, M. W. eds.). pp. 328, Elsevier.

Matsubara, T. et al. (1992) Fine structure of female and male internal reproductive organs in a spider mite Tetranychina harti (Ewing). Appl. Entomol. Zool., 27: 6578. doi: 10.1303/aez.27.65

McEnroe, W. D. (1961) The control of water loss by the two-spotted spider mite (Tetranychus telarius). Ann. Entomol. Soc. Am., 54: 883887. doi: 10.1093/aesa/54.6.883

McEnroe, W. D. (1969) Eyes of the female two-spotted spider mite, Tetranychus urticae. I. Morphology. Ann. Entomol. Soc. Am., 62: 461466. doi: 10.1093/aesa/62.3.461

McEnroe, W. D. and Dronka, K. (1966). Color vision in the adult female two-spotted spider mite. Science, 154: 782784. doi: 10.1126/science.154.3750.782.b

McEnroe, W. D. and Dronka, K. (1969) Eyes of the female two-spotted spider mite, Tetranychus urticae. II. Behavioral analysis of the photoreceptors. Ann. Entomol. Soc. Am., 62: 466469. doi: 10.1093/aesa/62.3.466

Mills, L. R. (1973) Morphology of glands and ducts in the two-spotted spider mite, Tetranychus urticae Koch, 1836. Acarologia, 15: 218236.

Mills, L. R. (1974) Structure of the visual system of the two-spotted spider-mite, Tetranychus urticae. J. Insect Physiol., 20: 795808. doi: 10.1016/0022-1910(74)90171-1

Mothes, U. and Seitz, K. A. (1981a) Fine structure and function of the prosomal glands of the two-spotted spider mite, Tetranychus urticae (Acari, Tetranychidae). Cell Tissue Res., 221: 339349. doi: 10.1007/BF00216738

Mothes, U. and Seitz, K. A. (1981b) Functional microscopic anatomy of the digestive system of Tetranychus urticae (Acari, Tetranychidae). Acarologia, 22: 257270.

Mothes, U. and Seitz, K. A. (1981c) The transformation of male sex cells of Tetranychus urticae K. (Acari, Tetranychidae) during passage from the testis to the oocytes: an electron microscopic study. International Journal of Invertebrate Reproduction, 4: 8194. doi: 10.1080/01651269.1981.10553420

Mothes, U. and Seitz, K. A. (1982) Action of the microbial metabolite and chitin synthesis inhibitor nikkomycin on the mite Tetranychus urticaeAn electron microscope study. Pestic. Sci., 13: 426441. doi: 10.1002/ps.2780130413

Mothes-Wagner, U. (1985) Fine structure of the hindgutof the two-spotted spider mite, Tetranychus urticae, with special reference to origin and function. Exp. Appl. Acarol., 1: 253272. doi: 10.1007/BF01198522

Mothes-Wagner, U. and Seitz, K. A. (1984) Ultrahistoloty of oogenesis and vitellogenesis in the spider mite Tetranychus urticae. Tissue Cell, 16: 179194. doi: 10.1016/0040-8166(84)90043-0

Naegele, J. A. et al. (1966) Spectral sensitivity and orientation response of the two-spotted spider mite, Tetranychus urticae Koch, from 350 mμ to 700 mμ. J. Insect Physiol., 12: 11871195. doi: 10.1016/0022-1910(66)90131-4

Nation, J. L. (2015) Digestion. In: Insect Physiology and Biochemistry, 3rd Edn. (Raton, B. ed.). pp. 3375, CRC Press.

Ngoc, P. C. T. et al. (2016) Complex evolutionary dynamics of massively expanded chemosensory receptor families in an extreme generalist chelicerate herbivore. Genome Biol. Evol., 8: 33233339. doi: 10.1093/gbe/evw249

Norton, R. A. (1977) A review of F. Grandjeans system of leg chaetotaxy in the Oribatei (Acari) and its application to the family Damaeidae. In: Biology of Oribatid Mites (Dindal, D. L.ed.). pp. 3361, SUNY College of Environmental Science and Forestry.

Nuzzaci, G. and de Lillo, E. (1989) Contributo alla conoscenza dello gnatosoma degli Acari Tenuipalpidi (Tetranychoidea: Tenuipalpidae). Entomologica, 24: 532. doi: 10.15162/0425-1016/622

Nuzzaci, G. and De Lillo, E. (1991a) Fine structure and functions of the mouthparts involved in the feeding mechanisms in Cenopalpus pulcher (Canestrini and Fanzago) (Tetranychoidea: Tenuipalpidae). In: The Acari: Reproduction, Development and Life-History Strategies (Schuster, R. and Murphy, P. eds.). pp. 367376, Springer Science + Business Media.

Nuzzaci, G. and De Lillo, E. (1991b) Fine structure and functions of the mouthparts involved in the feeding mechanisms in Tetranychus urticae Koch (Tetranychoidea: Tetranychidae), In: Modern Acarology: Proceedings of the VIII International Congress of Acarology (Dusbabek, F. and Bukva, V. eds.). pp. 301303, Academia Prague and SPB Academic.

Ochoa, R. et al. (2011) Herbivore exploits chink in armor of host. Am. Entomol., 57: 2629. doi: 10.1093/ae/57.1.26

刑部正博 (1993) エステラーゼアイソザイムによるミカンハダニ Panonychus citri (McGregor) の種内変異の解析. 果樹試験場報告, 特別報告, 4: 185.

Peñalva-Arana, D. C. et al. (2009) The chemoreceptor genes of the waterflea Daphnia pulex: Many Grs but no Ors. BMC Ecol. Evol., 9: 111. doi: 10.1186/1471-2148-9-79

Peng, G. et al. (2015) Evolution of TRP channels inferred by their classification in diverse animal species. Mol. Phylogenetics Evol., 84: 145157. doi: 10.1016/j.ympev.2014.06.016

Penman, D. R. and Cone, W. W. (1974) Structure of cuticular Lyrifissures in Tetranychus urticae. Ann. Entomol. Soc. Am., 67: 14. doi: 10.1093/aesa/67.1.1

Pijnacker, L. P. (1985) Spermatogenesis. In: Spider Mites. Their Biology, Natural Enemies and Control. Volume 1A (Helle, W. and Sabelis, M. W. eds.). pp. 109115, Elsevier.

Pringle, J. W. S. (1955) The function of the lyriform organs of arachnids. J. Exp. Biol., 32: 270278. doi: 10.1242/jeb.32.2.270

Pritchard, A. E. and Baker, E. W. (1952) A guide to the spider mites of deciduous fruit trees. Hilgardia, 21: 253287. doi: 10.3733/hilg.v21n09p253

Regev, S. and Cone, W. W. (1975) Evidence of farnesol as a male sex attractant of the twospotted spider mite, Tetranychus urticae Koch (Acarina: Tetranychidae). Environ. Entomol., 4: 307311. doi: 10.1093/ee/4.2.307

Regev, S. and Cone, W. W. (1976) Analyses of pharate female twospotted spider mites for nerolidol and geraniol: Evaluation for sex attraction of males. Environ. Entomol., 5: 133138. doi: 10.1093/ee/5.1.133

Regev, S. and Cone, W. W. (1980) The monoterpene citronellol, as a male sex attractant of the twospotted spider mite, Tetranychus urticae (Acarina: Tetranychidae). Environ. Entomol., 9: 5052. doi: 10.1093/ee/9.1.50

Royalty, R. N. et al. (1992) Arrestment of male twospotted spider mite caused by female sex pheromone. J. Chem. Ecol., 18: 137153. doi: 10.1007/BF00993749

齋藤 裕 (2012) ダニと糸. 「糸の博物誌」 (齋藤 裕・佐原 健共編). 海游舎.

Sakunwarin, S. et al. (2004). Structure of sensilla on the palptarsus and the tarsus I of Tetranychus truncatus Ehara (Acari: Tetranychidae). Syst. Appl. Acarol., 9: 133140. doi: 10.11158/saa.9.1.18

Sances, F. V. et al. (1979) Morphological responses of strawberry leaves to infestations of twospotted spider mite. J. Econ. Entomol., 72: 710713. doi: 10.1093/jee/72.5.710

島野智之 (2022) アクチノピリン (アクチノキチン) とは何? 日本ダニ学会誌, 31: 2628.

Summers, F. M. et al. (1973) The mouthparts of Bryobia rubrioculus (Sch.) (Acarina: Tetranychidae). Proc. Entomol. Soc. Wash., 75: 96111.

Suski, Z. W. and Naegele, J. A. (1963a) Light response in the two-spotted spider mite. I: Analysis of behavioral response. In: Advances in Acarology, Vol. 1 (Naegele,J. A. ed.). pp. 435444, Comstock Publishing Associates.

Suski, Z. W. and Naegele, J. A. (1963b) Light response in the two-spotted spider mite. II: Behavior of the sedentary and dispersal phases. In: Advances in Acarology, Vol. 1 (Naegele,J. A. ed.). pp. 445453, Comstock Publishing Associates.

Suzuki, T. et al. (2013) Photo-orientation regulates seasonal habitat selection in the two-spotted spider mite, Tetranychus urticae. J. Exp. Biol., 216: 977983. doi: 10.1242/jeb.079582

Suzuki, T. et al. (2015) Deoxidant-induced anoxia as a physical measure for controlling spider mites (Acari: Tetranychidae). Exp. Appl. Acarol., 65: 293305. doi: 10.1007/s10493-015-9881-8

Suzuki, T. et al. (2017a) Protocols for the delivery of small molecules to the two-spotted spider mite, Tetranychus urticae. PLOS ONE, 12: e0180658. doi: 10.1371/journal.pone.0180658

Suzuki, T. et al. (2017b) RNAi-based reverse genetics in the chelicerate model Tetranychus urticae: A comparative analysis of five methods for gene silencing. PLOS ONE, 12: e0180654. doi: 10.1371/journal.pone.0180654

建石繁明 (1988) ハダニ類の摂食方法の走査電顕による解明. 植物防疫, 42: 451456.

Travé, J. and Vachon, M. (1975) François Grandjean, 1882-1975 (Notice biographique et bibliographique). Acarologia, 17: 119.

van der Hammen, L. (1980) Glossary of acarological terminology. Vol. 1: General terminology. Dr. W. Junk, BV.

van Wijk, M. et al. (2006) Gross morphology of the central nervous system of a phytoseiid mite. Exp. Appl. Acarol., 40: 205216. doi: 10.1007/s10493-006-9039-9

Yamakawa, S. et al. (2018). Effects of anoxia and hypoxia on the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Appl. Entomol. Zool., 53: 535541. doi: 10.1007/s13355-018-0585-5

Zhu, J. et al. (2021) The odorant-binding proteins of the Spider mite Tetranychus urticae. Int. J. Mol. Sci., 22: 6828. doi: 10.3390/ijms22136828

 

第4章 生活史

Adachi-Hagimori, T. et al. (2008) A new cytogenetic mechanism for bacterial endosymbiont-induced parthenogenesis in Hymenoptera. Proc. R. Soc. B Biol. Sci., 275: 26672673. doi: 10.1098/rspb.2008.0792

Aguilar-Piedra, H. G. (2001) Tydeidae of citrus from selected countries: Distribution, seasonal occurrence, relative abundance, and feeding habits (Acari: Prostigmata). PhD thesis, University of Florida.

Akam, M. et al. (1994) The evolving role of Hox genes in arthropods. Development, 1994(Supplement): 209215. doi: 10.1242/dev.1994.Supplement.209

Amir-Maafi, M. et al. (2022) Innovative bootstrap-match technique for life table set up. Entomol. Gen., 42: 597609. doi: 10.1127/entomologia/2022/1334

Andreadis, T. G. et al. (2018) Amblyospora khaliulini (Microsporidia: Amblyosporidae): Investigations on its life cycle and ecology in Aedes communis (Diptera: Culicidae) and Acanthocyclops vernalis (Copepoda: Cyclopidae) with redescription of the species. J. Invertebr. Pathol., 151: 113125. doi: 10.1016/j.jip.2017.11.007

芦原 亘 (2001) スミスハダニの発生生態. 植物防疫, 55: 471474.

Bayu, M. S. Y. I. et al. (2017) Impact of constant versus fluctuating temperatures on the development and life history parameters of Tetranychus urticae (Acari: Tetranychidaea). Exp. Appl. Acarol., 72: 205227. doi: 10.1007/s10493-017-0151-9

Beard, J. and Ochoa, R. (2010) Ontogenetic modification in the Tuckerellidae (Acari: Tetranychoidea). Internat. J. Acarol., 36: 169173. doi: 10.1080/01647950903555459

Bengston, M. (1965) Overwintering behaviour of Tetranychus telarius (L.) in the Stanthorpe distinct, Queensland. Queensl. J. Agric. Anim. Sci., 22: 169176.

Blanton, A. G. and Peterson, B. F. (2020) Symbiont-mediated insecticide detoxification as an emerging problem in insect pests. Front. Microbiol., 11: 547108. doi: 10.3389/fmicb.2020.547108

Bondarenko, N. V. (1950) The influence of shortened bay on the annual cycle of development of the common spider mite. Doklady Akademii Nauk SSSR, 70: 10771080.

Boudreaux, H. B. (1963) Biological aspects of some phytophagous mites. Ann. Rev. Entomol., 8: 137154. doi: 10.1146/annurev.en.08.010163.001033

Bourtzis, K. and Miller, T. A. eds. (2003) Insect Symbiosis. CRC Press

Bourtzis, K. and Miller, T. A. eds. (2006) Insect Symbiosis II. CRC Press

Breeuwer, J. A. J. (1997) Wolbachia and cytoplasmic incompatibility in the spider mites Tetranychus urticae and T. turkestani. Heredity, 79: 4147. doi: 10.1038/hdy.1997.121

Breeuwer, J. A. J. and Jacobs, G. (1996) Wolbachia: intracellular manipulators of mite reproduction. Exp. Appl. Acarol., 20: 421434. doi: 10.1007/BF00053306

Broufas, G. D. and Koveos, D. S. (2001) Rapid cold hardening in the predatory mite Euseius (Amblyseius) finlandicus (Acari: Phytoseiidae). J Insect Physiol, 47: 699708. doi: 10.1016/S0022-1910(00)00162-1

Bryon, A. et al. (2013) Genome wide gene-expression analysis of facultative reproductive diapause in the two-spotted spider mite Tetranychus urticae. BMC Genom., 14: 815. doi: 10.1186/1471-2164-14-815

Bryon, A. et al. (2017a) Disruption of a horizontally transferred phytoene desaturase abolishes carotenoid accumulation and diapause in Tetranychus urticae. PNAS, 114: E5871E5880. doi: 10.1073/pnas.1706865114

Bryon, A. et al. (2017b) A molecular-genetic understanding of diapause in spider mites: Current knowledge and future directions. Physiol. Entomol., 42: 211224. doi: 10.1111/phen.12201

Bulmer, M. G. and Taylor, P. D. (1980) Sex ratio under the haystack model. J. Theor. Biol., 86: 8389. doi: 10.1016/0022-5193(80)90066-1

Burt, A. and Triverse, R. (藤原晴彦・遠藤圭子訳)(2010)「せめぎ合う遺伝子」. 共立出版.

Campbell, A. et al. (1974) Temperature requirements, of some aphids and their parasites. J. Appl. Ecol., 11: 431438. doi: 10.2307/2402197

Chi, H. (1988) Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol., 17: 2634. doi: 10.1093/ee/17.1.26

Chi, H. (2023) TWOSEX-MSChart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis. http://140.120.197/Ecology/prod02.htm (ver. 2023.7.20) (2023-6-4閲覧)

Chi, H. and Liu, H. (1985) Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin., 24: 225240.

Chi, H. et al. (2020) Age-stage, two-sex life table: An introduction to theory, data analysis, and application. Entomol. Gen., 40: 102123. doi: 10.1127/entomologia/2020/0936

Chi, H. et al. (2023) Advances in theory, data analysis, and application of the age-stage, two-sex life table for demographic research biological control, and pest management. Entomol. Gen., 43: 705732. doi: 10.1127/entomologia/2023/2048

Cone, W. W. and Wildman, T. E. (1988) Cold hardiness of diapausing twospotted spider mite (Acari: Tetranychidae) on hops in the Yakima Valley, USA. Prog. Acarol., 2: 59.

Cook, J. M. (1993) Sex determination in the Hymenoptera: A review of models and evidence. Heredity, 71: 421435. doi: 10.1038/hdy.1993.157

Cormier, A. et al. (2021) Comparative genomics of strictly vertically transmitted, feminizing microsporidia endosymbionts of amphipod crustaceans. Genome Biol. Evol., 13: evaa245. doi: 10.1093/gbe/evaa245

Damen, W. G. et al. (1998) A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider. PNAS, 95: 1066510670. doi: 10.1073/pnas.95.18.10665

Danilevskii, A. S. (1965) Photoperiodism and Seasonal Development of Insects. Oliver & Boyd Ltd.

Danks, H. V. (1987) Insect Dormancy: An Ecological Perspective. Biological Survey of Canada

Danks, H. V. (2005) Key themes in the study of seasonal adaptations in insects I. Patterns of cold hardiness. Appl. Entomol. Zool., 40: 199211. doi: 10.1303/aez.2005.199

Dearden, P. et al. (2003) Vasa expression and germ-cell specification in the spider mite Tetranychus urticae. Dev. Genes Evol., 212: 599603. doi: 10.1007/s00427-002-0280-x

Dearden, P. K. et al. (2002) Expression of pair-rule gene homologues in a chelicerate: early patterning of the two-spotted spider mite Tetranychus urticae. Development, 129: 54615472. doi: 10.1242/dev.00099

Dittrich, V. (1965) Embryonic development of Tetranychids. Boll. Zool. Agr. Bachic., Ser. 2, 7: 101104.

Dittrich, V. (1968) Die Embryonalentwicklung von Tetranychus urticae Koch in der Auflichtmikroskopie. Z. Angew. Entomol., 61: 142153. doi: 10.1111/j.1439-0418.1968.tb03884.x

江原昭三・後藤哲雄 (2009)「原色植物ダニ検索図鑑」. 全国農村教育協会.

Enigl, M. and Schausberger, P. (2007) Incidence of the endosymbionts Wolbachia, Cardinium and Spiroplasma in phytoseiid mites and associated prey. Exp. Appl. Acarol., 42: 7585. doi: 10.1007/s10493-007-9080-3

Fain, A. (1981) A revision of the phoretic deutonymphs (hypopi) of the genus Sennertia Oudemans, 1905 (Acari, Astigmata, Chaetodactylidae). Syst. Parasitol., 3: 145183. doi: 10.1007/BF00009250

Fisher, R. A. (1930) The Genetical Theory of Natural Selection, Clarendon Press. doi: 10.5962/bhl.title.27468

Fujimoto, H. and Takafuji, A. (1990) Ovipositional behaviour of diapause-Induced females of the citrus res mite, Panonychus citri (McGregor)(Acarina: Tetranychidae). Appl. Entomol. Zool., 25: 509514. doi: 10.1303/aez.25.509

Fujita, R. et al. (2021) Late male-killing viruses in Homona magnanima identified as osugoroshi viruses, novel members of Partitiviridae. Front. Microbiol., 11: 620623. doi: 10.3389/fmicb.2020.620623

Fukuda, J. and Shinkaji, N. (1954) Experimental studies on the influence of temperature and relative humidity upon the development of the Citrus Red Mite (Metatetranychus citri McGregor). Part 1: On the influence of temperature and relative humidity upon the development of the eggs. Bull. Tokai-Kinki Agric. Exp. Sta. (Horticulture), 2: 160171.

Geyspits, K. F. (1960) The effect of conditions in which preceding generations were reared on the photoperiodic reaction of geographical forms of the cotton spider mite (Tetranychus urticae Koch). Trans Peterhof Biol Inst L.S.U., 18: 169177.

Ghazy, N. A. and Amano, H. (2014) Rapid cold hardening response in the predatory mite Neoseiulus californicus. Exp. Appl. Acarol., 63: 535544. doi: 10.1007/s10493-014-9803-1

Ghazy, N. A. et al. (2015) The effects of prestarvation diet on starvation tolerance of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae). Physiol. Entomol., 40: 296303. doi: 10.1111/phen.12114

Goka, K. and Takafuji, A. (1990) Genetical studies on the diapause of the two-spotted spider mite, Tetranychus urticae Koch (1). Appl. Entomol. Zool., 25: 119125. doi: 10.1303/aez.25.119

Goka, K. and Takafuji, A. (1991) Genetical studies on the diapause of the two-spotted spider mite Tetranychus urticae Koch (2). Appl. Entomol. Zool., 26: 7784. doi: 10.1303/aez.26.77

Gomi, K. et al. (1997) Wolbachia having no effect on reproductive incompatibility in Tetranychus kanzawai Kishida (Acari: Tetranychidae). Appl. Entomol. Zool., 32: 485490. doi: 10.1303/aez.32.485

Gotoh, T. (1983) Life-history parameters of three species of Schizotetranychus on deciduous trees (Acarina: Tetranychidae). Appl. Entomol. Zool., 18: 122128. doi: 10.1303/aez.18.122

Gotoh, T. (1986a) Annual life cycle of the two-spotted spider mite, Tetranychus urticae Koch (Acarina: Tetranychidae), on Ribes rubrum L. in Sapporo: the presence of non-diapausing individuals. Appl. Entomol. Zool., 21: 454460. doi: 10.1303/aez.21.454

Gotoh, T. (1986b) Life-cycle variation in Panonychus akitanus Ehara (Acarina: Tetranychidae). Exp. Appl. Acarol., 2: 125136. doi:10.1007/bf01213756

Gotoh, T. (1986c) Local variation in overwintering stages of Panonychus akitanus Ehara (Acarina: Tetranychidae). Exp. Appl. Acarol., 2: 137151. doi: 10.1007/BF01213757

Gotoh, T. (1987) Life-history parameters of Panonychus ulmi (KOCH) (Acarina: Tetranychidae) on dwarf bamboo. Appl. Entomol. Zool., 22: 112114. doi: 10.1303/aez.22.112

Gotoh, T. (1989) Seasonal life cycles and diapause in three species of Schizotetranychus (Acarina: Tetranychidae). Appl. Entomol. Zool., 24: 407417. doi: 10.1303/aez.24.407

後藤哲雄 (2004) ダニ類. 「新編農学大事典」(山崎耕宇ほか監修). pp. 329332, 養賢堂.

後藤哲雄 (2009) 共生微生物. 「原色植物ダニ検索図鑑」(江原昭三・後藤哲雄編). pp. 296299, 全国農村教育協会.

後藤哲雄 (2019) 昆虫の生態. 「応用昆虫学の基礎」(後藤哲雄・上遠野冨士夫編). pp. 5778, 農文協.

後藤哲雄・齋 心 (2019) 個体群生態学, 生物的防除および害虫管理における基礎としての日齢-齢期両性生命表とその応用. 日本ダニ学会誌, 28: 3344. Doi: 10.2300/acari.28.33

Gotoh, T. and Kameyama, Y. (2014) Low temperature induces embryonic diapause in the spider mite, Eotetranychus smithi. J. Insect Sci., 14: 68. doi: 10.1093/jis/14.1.68

Gotoh, T. and Noguchi, O. (1990) Developmental success and reproductive incompatibility among populations of the European red mite, Panonychus ulmi (Acari: Tetranychidae). Exp. Appl. Acarol., 10: 157165. doi: 10.1007/BF01194091

後藤哲雄・高藤晃雄 (1996) 生活史. 「植物ダニ学」(江原昭三・真梶徳純編). pp. 81105, 全国農村教育協会.

Gotoh, T. et al. (1994) Embryonic development and diapause stage in Panonychus mites (Acari: Tetranychidae). Appl. Entomol. Zool., 29: 507515. doi: 10.1303/aez.29.507

Gotoh, T. et al. (2003a) Life-history traits of the six Panonychus species from Japan (Acari: Tetranychidae). Exp. Appl. Acarol., 29: 241252. doi: 10.1023/A:1025810731386

Gotoh, T. et al. (2003b)Wolbachia distribution and cytoplasmic incompatibility based on a survey of 42 spider mite species (Acari: Tetranychidae) in Japan. Heredity, 91: 208216. doi: 10.1038/sj.hdy.6800329

Gotoh, T. et al. (2005) Wolbachia and nuclear-nuclear interactions contribute to reproductive incompatibility in the spider mite Panonychus mori (Acari: Tetranychidae). Heredity, 94: 237246. doi: 10.1038/sj.hdy.6800605

Gotoh, T. et al. (2007a) Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity, 98: 1320. doi: 10.1038/sj.hdy.6800881

Gotoh, T. et al. (2007b) Wolbachia-induced cytoplasmic incompatibility in Japanese populations of Tetranychus urticae (Acari: Tetranychidae). Exp. Appl. Acarol., 42: 116. doi: 10.1007/s10493-007-9072-3

Gotoh, T. et al. (2010) Reproductive performance of seven strains of the tomato red spider mite Tetranychus evansi (Acari: Tetranychidae) at five temperatures. Exp. Appl. Acarol., 52: 239259. doi: 10.1007/s10493-010-9362-z

Gotoh, T. et al. (2014) Effects of constant and variable temperatures on development and reproduction of the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae). Exp. Appl. Acarol., 64: 465478. doi: 10.1007/s10493-014-9841-8

Grbić, M. et al. (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 479: 487492. doi: 10.1038/nature10640

Grenier, J. K. et al. (1997) Evolution of the entire arthropod Hox gene set predated the origin and radiation of the onychophoran/arthropod clade. Curr. Biol., 7: 547553. doi: 10.1016/S0960-9822(06)00253-3

Gutierrez, J. and Helle, W. (1985) Evolutionary changes in the Tetranychidae. In: Spider Mites. Their Biology, Natural Enemies and Control. Volume 1A (Helle, W. and Sabelis, M. W. eds.). Elsevier.

Haghshenas-Gorgabi, N. et al. (2023) Cardinium symbionts are pervasive in Iranian populations of the spider mite Panonychus ulmi despite inducing an infection cost and no demonstrable reproductive phenotypes when Wolbachia is a symbiotic partner. Exp. Appl. Acarol., 91: 369380. doi: 10.1007/s10493-023-00840-0

Hamilton, W. D. (1967) Extraordinary sex ratios. Science, 156: 477488. doi: 10.1126/science.156.3774.477

Hazan, A. et al. (1974) Life history and life tables of the carmine spider mite. Acarologia, 15: 414440. https://www1.montpellier.inrae.fr/CBGP/acarologia/article.php?id=3244

Helle, W. (1967) Fertilization in the two-spotted spider mite (Tetranychus urticae: Acari). Entomol. Exp. Appl., 10: 103110. doi: 10.1111/j.1570-7458.1967.tb00049.x

Helle, W. (1968) Genetic variability of photoperiodic response in an arrhenotokous mite (Tetranychus urticae). Entomol. Exp. Appl., 11: 101113.

Helle, W. and Pijnacker, L. P. (1985) Parthenogenesis, chromosomes and sex ratio. In: Spider Mites. Their Biology, Natural Enemies and Control. Volume 1A (Helle, W. and Sabelis, M. W. eds.). pp. 129139, Elsevier.

Hernandes, F. A. et al. (2006) Biological cycle of Lorryia formosa (Acari, Tydeidae) on rubber tree leaves: A case of thlytoky. Exp. Appl. Acarol., 38: 237242. doi: 10.1007/s10493-006-0014-2

Herran, B. et al. (2022) Cell-based analysis reveals that sex-determining gene signals in Ostrinia are pivotally changed by male-killing Wolbachia. PNAS Nexus, 2: pgac293. doi: 10.1093/pnasnexus/pgad016

Hodek, I. (1996) Diapause development, diapause termination and the end of diapause. Eur. J. Entomol., 93: 475487.

Hoffmann, A. A. et al. (1994) Cytoplasmic incompatibility in Australian populations of Drosophila melanogaster. Genetics, 136: 993999. doi: 10.1093/genetics/136.3.993

Hornett, E. A. et al. (2022) Sex determination systems as the interface between male-killing bacteria and their hosts. Proc. R. Soc. B Biol. Sci., 289: 20212781. doi: 10.1098/rspb.2021.2781

星崎杉彦 (1998) 虫の生殖を操る共生微生物Wolbachiaと細胞質不和合性, 雌性化について. 植物防疫, 52: 471474.

Houck, M. A. and OConnor, B. M. (1991) Ecological and evolutionary significance of phoresy in the Astigmata. Annu. Rev. Entomol., 36: 611636. doi: 10.1146/annurev.en.36.010191.003143

Huang, Y. B. and Chi, H. (2012) Assessing the application of the jackknife and bootstrap techniques to the estimation of the variability of the net reproductive rate and gross reproductive rate: A case study in Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). J. Agric. Forest., 61: 3745. doi: 10.1111/jen.12002

Huang, Y. B. and Chi, H. (2013) Life tables of Bactrocera cucurbitae (Diptera: Tephritidae): with an invalidation of the jackknife techniques. J. Appl. Entomol., 137: 327339. doi: 10.1111/j.1744-7917.2012.01525.x

Hunter, M. S. et al. (2003) A bacterial symbionts in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proc. R. Soc. B Biol. Sci., 270: 21852190. doi: 10.1098/rspb.2003.2475

Ikegami, Y. et al. (2000) Function of quiescence of Tetranychus kanzawai (Acari: Tetranychidae), as a defense mechanism against rain. Appl. Entomol. Zool., 35: 339343. doi: 10.1303/aez.2000.339

池本孝哉 (2011a) 昆虫やダニの「内的な発育最適温度」の理論と実際 (1) 内的な発育最適温度とは何か. 植物防疫, 65: 448453.

池本孝哉 (2011b) 昆虫やダニの「内的な発育最適温度」の理論と実際 (2) 推定計算法. 植物防疫, 65: 510514.

Ikemoto, T. et al. (2012) Confidence interval of intrinsic optimum temperature estimated using thermodynamic SSI model. Insect Sci., 20: 420428. doi: 10.1111/j.1744-7917.2012.01525.x

Imai, H. T. et al. (1988) Modes of spontaneous chromosomal mutation and karyotype evolution in ants with reference to the minimum interaction hypothesis. Jpn. J. Genet., 63: 159185. doi: 10.1266/jjg.63.159

Inbar, M. and Gerling, D. (2008) Plant-mediated interactions between whiteflies, herbivores, and natural enemies. Annu. Rev. Entomol., 53: 431448. doi: 10.1146/annurev.ento.53.032107.122456

石川 統 (1994) 昆虫を操るバクテリア. 平凡社.

石川 統 (2000) 共生微生物. アブラムシの生物学 (石川 統編). pp. 208229, 東京大学出版会.

Ito, K. (2003) Effect of leaf condition on diapause induction of a Kanzawa spider mite Tetranychus kanzawai Kishida (Acari: Tetranychidae) population on tea plants. Appl. Entomol. Zool., 38: 559563. doi: 10.1303/aez.2003.559

Ito, K. (2004) Deteriorating effects of diapause duration on postdiapause life history traits in the Kanzawa spider mite. Physiol. Entomol., 29: 453457. doi: 10.1111/j.0307-6962.2004.00421.x

Ito, K. (2005) Development times under long- and short-day conditions in the Kanzawa spider mite Tetranychus kanzawai (Acari: Tetranychidae). Exp. Appl. Acarol., 36: 291304. doi: 10.1007/s10493-005-6649-6

Ito, K. (2010) Effect of host plants on diapause induction in immature and adult Tetranychus kanzawai (Acari: Tetranychidae). Exp. Appl. Acarol., 52: 1117. doi: 10.1007/s10493-010-9342-3

Ito, K. (2014) Intra-population genetic variation in diapause incidence of adult-diapausing Tetranychus pueraricola (Acari: Tetranychidae). Ecol. Entomol., 39: 186194. doi: 10.1111/een.12084

Ito, K. and Chae, Y. (2018) Cold hardiness in immature stages and adults in the adult-diapausing spider mite Stigmaeopsis longus. Physiol. Entomol., 44: 1119. doi: 10.1111/phen.12271

Ito, K. and Hamada, E. (2018) Adult female sensitivity to day-length conditions in terms of winter-egg production in Schizotetranychus brevisetosus Ehara (Acari: Tetranychidae). J. Acarol. Soc. Jpn., 27: 6976. doi: 10.2300/acari.27.69

Ito, K. and Saito, Y. (2006) Effects of host-plant species on diapause induction of the Kanzawa spider mite, Tetranychus kanzawai. Entomol. Exp. Appl., 121: 177184. doi: 10.1111/j.1570-8703.2006.00471.x

Ito, K. and Yamanishi, N. (2019) Production of winter eggs in Schizotetranychus brevisetosus (Acari: Tetranychidae) inhabiting evergreen Japanese blue oak. Exp. Appl. Acarol., 78: 521534. doi: 10.1007/s10493-019-00402-3

Ito, K. et al. (2013) Relationship between body colour, feeding, and reproductive arrest under short-day development in Tetranychus pueraricola (Acari: Tetranychidae). Exp. Appl. Acarol., 60: 471477. doi: 10.1007/s10493-013-9660-3

伊戸泰博 (1993) ホコリダニ科の概説と検索. 「日本原色植物ダニ図鑑」(江原昭三編). pp. 227229, 全国農村教育協会.

Jafarian, F. et al. (2020) Evaluation of antibiosis resistance in seven apple cultivars to Eotetranychus frosti (Tetranychidae). Syst. Appl. Acarol., 25: 525537. doi: 10.11158/saa.25.3.12

Johanowicz, D. L. and Hoy, M. A. (1996) Wolbachia in a predator-prey system: 16S ribosomal DNA analysis of two phytoseiids (Acari: Phytoseiidae) and their prey (Acari: Tetranychidae). Ann. Entomol. Soc. Am., 89: 435441. doi: 10.1093/aesa/89.3.435

Johanowicz, D. L. and Hoy, M. A. (1998) Experimental induction and termination of non-reciprocal incompatibilities in a parahaploid mite. Entomol. Exp. Appl., 87: 5158. doi: 10.1046/j.1570-7458.1998.00303.x

陰山大輔 (2007) 共生微生物. 「昆虫生理生態学」 (河野義明・田付貞洋編). pp. 131139, pp. 190196, 朝倉書店.

陰山大輔 (2015) 消えるオス: 昆虫の性をあやつる微生物の戦略. 化学同人.

Kageyama, D. et al. (2012) Insect sex determination manipulated by their endosymbionts: Incidences, mechanisms and implications. Insects, 3: 161199. doi: 10.3390/insects3010161

Kageyama, D. et al. (2023) A male-killing gene encoded by a symbiotic virus of Drosophila. Nat. Commun., 14: 1357. doi: 10.1038/s41467-023-37145-0

Katsuma, S. et al. (2022) A Wolbachia factor for male killing in lepidoperan insects. Nat. Commun., 13: 6764. doi: 10.1038/s41467-022-34488-y

Kawaguchi, S. et al. (2016) Imaginal feeding for progression of diapause phenotype in the two-spotted spider mite (Acari: Tetranychidae). Environ. Entomol., 45: 15681573. doi: 10.1093/ee/nvw127

Kawakami, Y. et al. (2009) Suppression of ovarian development and vitellogenin gene expression in the adult diapause of the two-spotted spider mite Tetranychus urticae. J. Insect. Physiol., 55: 7077. doi: 10.1016/j.jinsphys.2008.10.007

Khila, A. and Grbić, M. (2007) Gene silencing in the spider mite Tetranychus urticae: dsRNA and siRNA parental silencing of the Distal-less gene. Dev. Genes Evol., 217: 241251. doi: 10.1007/s00427-007-0132-9

Khodayari, S. et al. (2012) Effects of acclimation and diapause on the thermal tolerance of the two-spotted spider mite Tetranychus urticae. J. Therm. Biol., 37: 419423. doi: 10.1016/j.jtherbio.2012.04.005

Khodayari, S. et al. (2013) Deciphering the metabolic changes associated with diapause syndrome and cold acclimation in the two-spotted spider mite Tetranychus urticae. PLOS ONE, 8: e54025. doi: 10.1371/journal.pone.0054025

桐谷圭治 (2012) 日本産昆虫, ダニの発育零点と有効積算温度定数: 2. 農環硏報, 31: 174. doi: 10.24514/00002995

Kondo, A. and Takafuji, A. (1985) Resource utilization pattern of two species of tetranychid mites (Acarina: Tetranychidae). Res. Popul. Ecol., 27: 145157. doi: 10.1007/BF02515487

Koveos, D. S. and Veerman, A. (1994) Accumulation of photoperiodic information during diapause development in the spider mite Tetranychus urticae. J. Insect Physiol., 40: 701707. doi: 10.1016/0022-1910(94)90097-3

Koveos, D. S. et al. (1993) The same photoperiodic clock may control induction and maintenance of diapause in the spider mite Tetranchus urticae. J. Biol. Rhythms., 8: 265282. doi: 10.1177/074873049300800401

Kroon, A. et al. (1998) Response to photoperiod during diapause development in the
spider mite Tetranychus urticae. J. Insect Physiol., 44: 271
277. doi: 10.1016/s0022-1910(97)00120-0

Kroon, A. et al. (2004) Predation risk affects diapause induction in the spider mite Tetranychus urticae. Exp. Appl. Acarol., 34: 307314. doi: 10.1023/B:APPA.0000049226.60183.29

Kroon, A. et al. (2005) Diapause incidence in the two-spotted spider mite increases due to predator presence, not due to selective predation. Exp. Appl. Acarol., 35: 7381. doi: 10.1007/s10493-004-1980-x

Kroon, A. et al. (2008) "Sleeping with the enemy"predator-induced diapause in a mite. Naturwissenschaften, 95: 11951198. doi: 10.1007/s00114-008-0442-4

Lawo, J.-P. and Lawo, N. C. (2011) Misconceptions about the comparison of intrinsic rates of natural increase. J. Appl. Entomol., 135: 715725. doi: 0.1111/j.1439-0418.2011.01608.x

Lees, A. D. (1953) Environmental factors controlling the evocation and termination of diapause in the fruit tree red spider mite Metatetranychus ulmi Koch (Acarina: Tetranychidae). Ann. Appl. Biol., 40: 449486.

Lees, A. D. (1955) The physiology of diapause in arthropods (No. 4). CUP Archive.

Lewontin, R. C. (1965) Selection for colonizing ability. In: The Genetics of Colonizing Species (Baker, H. G. and Stebbins, J. L. eds.). pp. 7794, Academic Press.

Li, G.-Y. et al. (2022) Life history traits of spider mites and their relationship: A test of trade-off theory. Zoosymposia, 21: 436. doi: 10.11646/zoosymposia.21.1.3

Li, Y. et al. (2023) Rapid cold hardening response of the phytoseiid mite Neoseiulus striatus: increased cold tolerance but not reduced predation. Exp. Appl. Acarol., 89: 1527. doi: 10.1007/s10493-022-00771-2

Liguori, M. et al. (2002) Aspects of life history of Tydeus californicus (Banks) (Acari Tydeidae). Redia, 85: 143153.

Lombardero, M. J. et al. (2000) Biology, demography and community interactions of Tarsonemus (Acarina: Tarsonemidae) mites phoretic on Dendroctonus frontalis (Coleoptera: Scolytidae). Agric. For. Entomol. 2: 193202. doi: 10.1046/j.1461-9563.2000.00070.x

Macke, E. et al. (2010) Sex allocation in haplodiploids is mediated by egg size: Evidence in the spider mite Tetranychus urticae Koch. Proc. R. Soc. B Biol. Sci., 278: 10541063. doi: 10.1098/rspb.2010.1706

Macke, E. et al. (2011a) Experimental evolution of reduced sex ratio adjustment under local mate competition. Science, 334: 11271129. doi: 10.1126/science.1212177

Macke, E. et al. (2011b) Sex allocation in haplodiploids is mediated by egg size: Evidence in the spider mite Tetranychus urticae Koch. Proc. R. Soc. B Biol. Sci., 278: 10541063. doi: 10.1098/rspb.2010.1706

Macke, E. et al. (2012) Sex-ratio adjustment in response to local mate competition is achieved through an alteration of egg size in a haplodiploid spider mite. Proc. R. Soc. B Biol. Sci., 279: 46344642. doi: 10.1098/rspb.2012.1598

Majerus, T. M. et al. (1999) Molecular identification of a male-killing agent in the ladybird Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Insect Mol. Biol., 8: 551555. doi: 10.1046/j.1365-2583.1999.00151.x

Malumphy, C. (2009) Tarsonemid broad mites hitch-hiking on whitefly imported with vegetables from Nigeria. Br. J. Entomol. Nat. Hist., 22: 5859.

Matsuda, T. et al. (2014) Phylogenetic analysis of the spider mite sub-family Tetranychinae (Acari: Tetranychidae) based on the mitochondrial COI gene and the 18S and the 5' end of the 28S rRNA genes indicates that several genera are polyphyletic. PLOS ONE, 9: e108672. doi: 10.1371/journal.pone.0108672

Matsuda, T. et al. (2018) Phylogeny of the spider mite sub-family Tetranychinae (Acari: Tetranychidae) inferred from RNA-Seq data. PLOS ONE, 13: e0203136. doi: 10.1371/journal.pone.0203136

Mitchell, R. (1973) Growth and population dynamics of a spider mite (Tetranychus urticae K., Acarina: Tetranychidae). Ecology, 54: 13491355. doi: 10.2307/1934198

Mochizuki, M. and Takafuji, A. (1996) Effect of photoperiod and temperature on the diapause termination of the Kanzawa spider mite, Tetranychus kanzawai Kishida (Acari: Tetranychidae). J. Acarol. Soc. Jpn., 5: 8388.

Morita, A. et al. (2020) Effectiveness of second mating in sperm-depleted females in the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Syst. Appl. Acarol., 25: 15611575. doi: 10.11158/saa.25.9.4

Mousseau, T. A. (1991) Maternal effects in insects: examples, constraints, and geographic variation. In: The Unity of Evolutionary Biology. vol 2. pp. 745761, Dioscoridies.

Murata, Y. and Osakabe, M. (2013) The BunsenRoscoe reciprocity law in ultraviolet-B-induced mortality of the two-spotted spider mite Tetranychus urticae. J. Insect Physiol., 59: 241247. doi: 10.1016/j.jinsphys.2012.11.008

Nagamine, K. et al. (2023) Male-killing virus in a noctuid moth Spodoptera litura. PNAS, 120: e2312124120. doi: 10.1073/pnas.2312124120

Nagelkerke, C. J. and Sabelis, M. W. (1996) Hierarchical levels of spatial structure and their consequences for the evolution of sex allocation in mites and other arthropods. Am. Nat., 148: 1639. doi: 10.1086/285909

野田博明 (1999) ウォルバキア: 利己的遺伝因子, 病原体, そして相利共生者. 生物科学, 51: 143158.

沼田英治 (1991) 世代を越えて動く時計はあるか?—ラズモバのダニの場合. 遺伝, 45: 5255.

Oku, K. et al. (2003) Different maternal effects on diapause induction of tetranychid mites, Tetranychus urticae and T. kanzawai (Acari: Tetranychidae). Appl. Entomol. Zool., 38: 267270. doi: 10.1303/aez.2003.267

ONeill, S. L. et al. eds. (1997) Influential Passengers: Inherited Microorganisms and Arthropod Reproduction. Oxford Univ. Press

Pace, R. M. et al. (2016) Composition and genomic organization of arthropod Hox clusters. EvoDevo, 7: 111. doi: 10.1186/s13227-016-0048-4

Parker, R. and Gerson, U. (1994) Dispersal of the broad mite, Polyphagotarsonemus latus (Banks) (Heterostigmata: Tarsonemidae), by the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyorodidae). Exp. Appl. Acarol., 18: 581585. doi: 10.1007/BF00051720

Parr, W. J. and Hussey, N. W. (1966) Diapause in the glasshouse red spider mite (Tetranychus urticae Koch): A synthesis of present knowledge. Hort. Res., 6: 121.

Perrot-Minnot, M. J. et al. (2002) Contrasting effects of Wolbachia on cytoplasmic incompatibility and fecundity in the haplodiploid mite Tetranychus urticae. J. Evol. Biol., 15: 808817. doi: 10.1046/j.1420-9101.2002.00446.x

Pijnacker, L. P. et al. (1981) Cytological investigations on the female and male reproductive system of the parthenogenetic privet mite Brevipalpus obovatus Donnadieu (Phytoptipalpidae, Acari). Acarologia, 22: 157163.

Potter, D. A. (1978) Functional sex ratio in the carmine spider mite. Ann. Entomol. Soc. Am., 71: 218222. doi: 10.1093/aesa/71.2.218

Ratkowsky, D. A. and Reddy, G. V. (2017) Empirical model with excellent statistical properties for describing temperature-dependent developmental rates of insects and mites. Ann. Entomol. Soc. Am., 110: 302309. doi: 10.1093/aesa/saw098

Razumova, A. P. (1995) Annual rhythms in geographical populations of the hawthorn mite Tetranychus crataegi Hirst (Acarina, Tetranychidae). Ėntomol. Obozr., 74: 227233.

Rismayani, et al. (2021) Impact of constant and fluctuating temperatures on population characteristics of Tetranychus pacificus (Acari: Tetranychidae). J. Econ. Entomol., 114: 638651. doi: 10.1093/jee/toaa327

Roeder, C. et al. (1996) The effects of relatedness on progeny sex ratio in spider mites. J. Evol. Biol., 9: 143151. doi: 10.1046/j.1420-9101.1996.9020143.x

Roeder, C. M. (1992) Sex ratio response of the two-spotted spider mite (Tetranychus urticae Koch) to changes in density under local mate competition. Can. J. Zool., 70: 19651967. doi: 10.1139/z92-266

Ros, V. I. D. and Breeuwer, J. A. J. (2009) The effects of, and interactions between, Cardinium and Wolbachia in the doubly infected spider mite Bryobia sarothamni. Heredity, 102: 413422. doi: 10.1038/hdy.2009.4

Sabelis, M. W. (1991) Life-history evolution of spider mites. In: The Acari (Schuster, R. and Murphy, P. W., eds). pp. 2349, Chapman & Hall.

Saito, Y. (1979) Comparative studies on life histories of three species of spider mites (Acarina: Tetranychidae). Appl. Entomol. Zool., 14: 8394. doi: 10.1303/aez.14.83

Saito, Y. (2010) Plant Mites and Sociality: Diversity and Evolution. 187. Springer-Verlag.

斎藤 裕・高橋健一 (1982) タケスゴモリハダニSchizotetranychus celarius(BANKS)の変異に関する研究: II. 同所的2変異型の生活様式の比較. 日本生態学会誌, 32: 6978. doi: 10.18960/seitai.32.1_69

Saito, Y. and Ueno, J. (1979) Life history studies on Schizotetranychus celarius (Banks) and Aponychus corpuzae Rimando as compared with other Tetranychid mite species (Acarina: Tetranychidae). Appl. Entomol. Zool., 14: 445452. doi: 10.1303/aez.14.445

Saito, Y. et al. (2002) Differences in diapause attributes between two clinal forms distinguished by male-to-male aggression in a subsocial spider mite, Schizotetranychus miscanthi Saito. Ecol. Res., 17: 645653. doi: 10.1046/j.1440-1703.2002.00522.x

Saito, Y. et al. (2005) Imaginal induction of diapause in several adult-diapausing spider mites. Physiol. Entomol., 30: 96101. doi: 10.1111/j.0307-6962.2005.00441.x

Saito, Y. et al. (2013) Life history differences between two forms of the social spider mite, Stigmaeopsis miscanthi. Exp. Appl. Acarol., 60: 313320. doi: 10.1007/s10493-012-9646-6

Sato, Y. and Saito, Y. (2007) Can the extremely female-biased sex ratio of the social spider mites be explained by Hamiltons local mate competition model? Ecol. Entomol., 32: 597602. doi: 10.1111/j.1365-2311.2007.00908.x

Schwager, E. E. et al. (2007) Duplicated Hox genes in the spider Cupiennius salei. Front. Biol., 4: 111. doi: 10.1186/1742-9994-4-10

Seeman, O. D. and Walter, D. E. (2023) Phoresy and mites: more than just a free ride. Annu. Rev. Entomol., 68: 6988. doi: 10.1146/annurev-ento-120220-013329

Shi, P.-J. et al. (2017) Comparison of thermal performance equations in describing temperature-dependent developmental rates of Insects: (III) phenological applications. Ann. Entomol. Soc. Am., 110: 558564. doi: 10.1093/aesa/sax063

Shibaya, S. and Suzuki, T. (2018) A parental RNAi-based reverse genetics system for analyzing embryonic development of Tetranychus urticae. XV Intl. Conference Acarol., p.26.

Shimazaki, S. et al. (2019) Seasonal occurrence and development of three closely related Oligonychus species (Acari: Tetranychidae) and their associated natural enemies on fagaceous trees. Exp. Appl. Acarol., 79: 4768. doi: 10.1007/s10493-019-00410-3

清水喜一・花香寛源 (1975) カンザワハダニの休眠におよぼす日長の影響. 関東東山病害虫研究会年報, 22: 92.

Shinkaji, N. (1975) Seasonal occurrence of the winter eggs and environmental factors controlling the evocation of diapause in the common conifer spider mite, Oligonychus ununguis (Jacobi), on chestnut (Acarina: Tetranychidae). Jpn. J. Appl. Entomol. Zool., 19: 105111 (in Japanese).

Silva, G. L. et al. (2014) Life cycle of Tydeus californicus (Acari: Tydeidae) on leaves of Inga marginata with and without pollen of Typha angustiforlia under laboratory conditions. Int. J. Acarol., 40: 509512. doi: 10.1080/01647954.2014.953999

Smith-Meyer, M. K. P. (1996) Mite Pests and their Predators on Cultivated Plants in Southern Africa. ARC Plant Protection Research Institute

So, P.-M. and Takafuji, A. (1991) Coexistence of Tetranychus urticae (Acarina: Tetranychidae) with different capacities for diapause: Comparative life-history traits. Oecologia, 87: 146151. doi: 10.1007/BF00323792

Soroker, V. et al. (2003) Whitefly wax as a cue for phoresy in the broad mite, Polyphagotarsonemus latus (Acari: Tarsonemidae). Chemoecology, 13: 163168. doi: 10.1007/s00049-003-0243-3

Stañková, K. et al. (2013) Irreversible prey diapause as an optimal strategy of a physiologically extended LotkaVolterra model. J. Math. Biol., 66: 767794. doi: 10.1007/s00285-012-0599-5

Stenseth, C. (1965) Cold hardiness in the two-spotted spider mite (Tetranychus urticae Koch). Entomol. Exp. Appl., 8: 3338. doi: 10.1111/j.1570-7458.1965.tb02340.x

Suwa, A. and Gotoh, T. (2006) Geographic variation in diapause induction and mode of diapause inheritance in Tetranychus pueraricola. J. Appl. Entomol., 130: 329335. doi: 10.1111/j.1439-0418.2006.01050.x

鈴木丈詞 (2018) 節足動物の飼育容器及び節足動物の発育同調方法. 特開 2018-157797.

Suzuki, T. and Takeda, M. (2009) Diapause-inducing signals prolong nymphal development in the two-spotted spider mite Tetranychus urticae. Physiol. Entomol., 55: 278283. doi: 10.1111/j.1365-3032.2009.00688.x

Suzuki, T. et al. (2009) UV tolerance in the two-spotted spider mite, Tetranychus urticae. J. Insect Physiol., 55: 649654. doi: 10.1016/j.jinsphys.2009.04.005

Suzuki, T. et al. (2013) Photo-orientation regulates seasonal habitat selection in the two-spotted spider mite, Tetranychus urticae. J. Exp. Biol., 216: 977983. doi: 10.1242/jeb.079582

Suzuki, T. et al. (2014) An LED-based UV-B irradiation system for tiny organisms: System description and demonstration experiment to determine the hatchability of eggs from four Tetranychus spider mite species from Okinawa. J. Insect Physiol., 62: 110. doi: 10.1016/j.jinsphys.2014.01.005

高藤晃雄 (1986) ハダニ類の休眠に関する研究の現状と問題点. 植物防疫, 32: 489495.

Takafuji, A. and Gotoh, T. (1999) Diapause characteristics of some Tetranychus (Acari: Tetranychidae) mites of Okinawa Island. J. Acarol. Soc. Jpn., 8: 5154. doi: 10.2300/acari.8.51

Takafuji, A. and Tsuda, Y. (1992) Coexistence of Tetranychus urticae with different diapause capacities: A mathematical model. Exp. Appl. Acarol., 14: 251260. doi: 110.1007/BF01200567

Takafuji, A. et al. (1991) Inter- and intra-population variations in diapause attribute of the two-spotted spider mite, Tetranychus urticae Koch, in Japan. Res. Popul. Ecol., 33: 331344. doi: 10.1007/BF02513558

Takafuji, A. et al. (2003) Diapause characteristics of two species of tetranychid mites (Acari: Tetranychidae) in southern Japan and Taiwan. Appl. Entomol. Zool., 38: 225232. doi: 10.1303/aez.2003.225

Takano, S. I. et al. (2017) Unique clade of alphaproteobacterial endosymbionts induces complete cytoplasmic incompatibility in the coconut beetle. PNAS, 114: 61106115. doi: 10.1073/pnas.1618094114

Takano, S. I. et al. (2021) Candidatus Mesenet longicola: novel endosymbionts of Brontispa longissimi that induce cytoplasmic incompatibility. Microb. Ecol., 82: 512522. doi: 10.1007/s00248-021-01686-y

Takano, Y. et al. (2017) Effect of temperature on diapause termination and post-diapause development in Eotetranychus smithi (Acari: Tetranychidae). Exp. Appl. Acarol., 73: 353363. doi: 10.1007/s10493-017-0199-6

Takano, Y. et al. (2021) Diapause induction in Eotetranychus smithi (Acari: Tetranychidae): Effect of average temperature, but not of thermoperiod. Physiol. Entomol., 46: 815. doi: 10.1111/phen.12335

Takeda, N. et al. (2020) A vegetable oilbased biopesticide with ovicidal activity against the two-spotted spider mite, Tetranychus urticae Koch. Eng. Life Sci., 20: 525534. doi: 10.1002/elsc.202000042

Tamura, K. and Ito, K. (2017) Extremely low fecundity and highly female-biased sex ratio in nestliving spider mite Schizotetranychus brevisetosus (Acari: Tetranychidae). Syst. Appl. Acarol., 22: 170183. doi: 10.11158/saa.22.2.2

Tauber, M. J. et al. (1986) Seasonal Adaptations of Insects. Oxford University Press.

Taylor, G. P. et al. (2011) The host range of the male-killing symbiont Arsenophonus nasoniae in filth fly parasitioids. J. Invertebr. Pathol., 106: 371379. doi: 10.1016/j.jip.2010.12.004

Terry, R. S. et al. (1998) Impact of a novel feminizing microsporidium on its crustacean host. J. Eukaryot. Microbiol., 45: 497501. doi: 10.1111/j.1550-7408.1998.tb05106.x

Terry, R. S. et al. (2004) Widespread vertical transmission and associated host sex-ratio distortion within the eukaryotic phylum Microspora. Proc. R. Soc. B Biol. Sci., 271: 17831789. doi: 10.1098/rspb.2004.2793

Toyoshima, S. (2010) Effects of fertilization status and age of gravid females on the egg size in Tetranychus urticae Koch. J. Acarol. Soc. Jpn., 19: 107112. doi: 10.2300/acari.19.107

Tsagkarakou, A. et al. (1996) Molecular identification of a Wolbachia endosymbiont in a Tetranychus urticae strain (Acari: Tetranychidae). Insect Mol. Biol., 5: 217221. doi: 10.1111/j.1365-2583.1996.tb00057.x

Tsuda, Y. et al. (1997) Maintenance of diapause variability in the two-spotted spider mite, Tetranychus urticae, in a heterogeneous and stochastic environment. Res. Popul. Ecol., 39: 7782. doi: 10.1007/BF02765252

Ubara, M. and Osakabe, M. (2015) Suspension of egg hatching caused by high humidity and submergence in spider mites. Environ. Entomol., 44: 12101219. doi: 10.1093/ee/nvv080

Uchida, M. (1980) Appearance time of diapausing females and termination of diapause in the two-spotted spider mite, Tetranychus urticae Koch and the Kanzawa spider mite, Tetranychus kanzawai Kishida on pear tree in Tottori distinct (Acarina: Tetranychidae ). Jpn. J. Appl. Entomol. Zool., 24: 175183 (in Japanese).

Ullah, M. S. et al. (2011) A comparative study of development and demographic parameters of Tetranychus merganser and Tetranychus kanzawai (Acari: Tetranychidae) at different temperatures. Exp. Appl. Acarol., 54: 119. doi: 10.1007/s10493-010-9420-6

Ullah, M. S. et al. (2020) Effects of temperature on demographic parameters of Bryobia praetiosa Koch (Acari: Tetranychidae). J. Econ. Entomol., 113: 211221. doi: 10.1093/jee/toz294

Ullah, M. S. et al. (2022) Development and reproductive capacity of the Miyake spider mite Eotetranychus kankitus (Acari: Tetranychidae) at different temperatures. Insects, 13: 910. doi: 10.3390/insects13100910

van der Geest, L. P. S. (1985) Aspects of Physiology. In: Spider Mites. Their Biology, Natural Enemies and Control. Volume 1A (Helle, W. and Sabelis, M. W. eds.). pp. 171184, Elsevier.

Veerman, A. (1977) Photoperiodic termination of diapause in spider mites. Nature, 266: 526527. doi: 10.1038/266526b0

Veerman, A. (1985) Diapause. In: Spider Mites. Their Biology, Natural Enemies and Control. Volume 1A (Helle, W. and Sabelis, M. W. eds.). pp. 279316, Elsevier.

Weeks, A. R. and Breeuwer, J. A. J. (2001) Wolbachia-induced parthenogenesis in a genus of phytophagous mites. Proc. R. Soc. B Biol. Sci., 268: 22452251. doi: 10.1098/rspb.2001.1797

Weeks, A. R. et al. (2001) A mite species that consists entirely of haploid females. Science, 292: 24792482. doi: 10.1126/science.1060411

Wei, P. et al. (2021) Comparing the efficiency of RNAi after feeding and injection of dsRNA in spider mites. Pestic. Biochem. Phys., 179: 104966. doi: 10.1016/j.pestbp.2021.104966

Weinert, L. A. et al. (2015) The incidence of bacterial endosymbionts in terrestrial arthropods. Proc. Royal Soc. B: Biol. Sci., 282: 20150249. doi: 10.1098/rspb.2015.0249

Werren, J. H. et al. (1994) Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata). J. Bacteriol., 176: 388394. doi: 10.1128/jb.176.2.388-394.1994

Wrensch, D. L. and Young, S. S. Y. (1978) Effects of density and host quality on rate of development, survivorship, and sex ratio in the carmine spider mite. Environ. Entomol., 7: 499501. doi: 10.1093/ee/7.4.499

Wybouw, N. et al. (2019) Convergent evolution of cytochrome P450s underlies independent origins of keto-carotenoid pigmentation in animals. Proc. R. Soc. B Biol. Sci., 286: 20191039. doi: 10.1098/rspb.2019.1039

Wybouw, N. et al. (2023) Egg provisioning explains the penetrance of symbiont-mediated sex allocation distortion in haplodiploids. Heredity, 131: 221229. doi: 10.1038/s41437-023-00638-1

Xie, K. et al. (2020) Co-infection of Wolbachia and Spiroplasma in spider mite Tetranychus truncatus increases male fitness. Insect Sci., 27: 921937. doi: 10.1111/1744-7917.12696

Ye, Q.-T. et al. (in press) The symbiont Wolbachia alleviates pesticide susceptibility in Tetranychus urticae spider mite through enhanced host detoxification pathways. Insect Sci. doi: 10.1111/1744-7917.13341

Young, S. S. Y. et al. (1986) Control of sex ratio by female spider mites. Entomol. Exp. Appl., 40: 5360. doi: 10.1111/j.1570-7458.1986.tb02155.x

Zaher, M. A. and Shehata, K. K. (1963) Biological studies on Tydeus californicus (Banks) in Egypt (U. A. R.). Bull. Soc. Entomol. Egypt., 47: 297300.

Zchori-Fein, E. et al. (2001) A newly discovered bacterium associated with parthenogenesis and a change in host selection behavior in parasitoid wasps. PNAS, 98: 1255512560. doi: 10.1073/pnas.221467498

Zele, F. et al. (2018a) Endosymbiont diversity and prevalence in herbivorous spider mite populations in South-Western Europe. FEMS Microbiol. Ecol., 94: fiy015. doi: 10.1093/femsec/fiy015

Zele, F. et al. (2018b) Wolbachia both aids and hampers the performance of spider mites on different host plants. FEMS Microbiol. Ecol., 94: fiy187. doi: 10.1093/femsec/fiy187

Zhang, Y.-K. et al. (2016) Screening of spider mites (Acari: Tetranychidae) for reproductive endosymbionts reveals links between co-infection and evolutionary history. Sci. Rep., 6: 27900. doi: 10.1038/srep27900

Zhang, Z.-Q. (2003) Mites of Greenhouses: Identification, Biology and Control. CABI Publishing.

Zhu, Y.-X. et al. (2019) A change in the bacterial community of spider mites decreases fecundity on multiple host plants. MicrobiologyOpen, 8: e743. doi: 10.1002/mbo3.743

Zhu, Y.-X. et al. (2020) Double infection of Wolbachia and Spiroplasma alters induced plant defense and spider mite fecundity. Pest Manag. Sci., 76: 32733281. doi: 10.1002/ps.5886

 

第5章 生理・生化学

Agrawal, A. A. et al. (2002) Induction of preference and performance after acclimation to novel hosts in a phytophagous spider mite: Adaptive plasticity? Am. Nat., 159: 553565. doi: 10.1086/339463

Alarie, H. et al. (2023) Are 20-hydroxyecdysone and related genes potential biomarkers of sublethal exposure to lipid-altering contaminants? Environ. Sci. Pollut. Res., 30: 112. doi: 10.1007/s11356-023-31087-2

Ali, M. Y. et al. (2023) Tritrophic interactions among arthropod natural enemies, herbivores and plants considering volatile blends at different scale levels. Cells, 12: 251. doi: 10.3390/cells12020251

青木淳一ほか (2016) ダニとは. 「ダニのはなし—人間との関わり」(島野智之・高久 元編). pp. 125, 朝倉書店.

Arakawa, K. et al. (2021) Proteomic evidence for the silk fibroin genes of spider mites (Order Trombidiformes: Family Tetranychidae). J. Proteom., 239: 104195. doi: 10.1016/j.jprot.2021.104195

Arimura, G. (2021) Making sense of the way plants sense herbivores. Trends Plant Sci., 26: 288298. doi: 10.1016/j.tplants.2020.11.001

Arimura, G. et al. (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature, 406: 512515. doi: 10.1038/35020072

Arimura, G. et al. (2009) Chemical and molecular ecology of herbivore-induced plant volatiles: Proximate factors and their ultimate functions. Plant Cell Physiol., 50: 911923. doi: 10.1093/pcp/pcp030

東 政明 (1995) 鱗翅目昆虫中腸の構造とその生理機能 最近の進歩. 日本蚕糸学雑誌, 64: 118. doi: 10.11416/kontyushigen1930.64.1

Bensoussan, N. et al. (2018) The digestive system of the two-spotted spider mite, Tetranychus urticae Koch, in the context of the mite-plant interaction. Front. Plant Sci., 9: 1206. doi: 10.3389/fpls.2018.01206

Berenbaum, M. R. (2002) Postgenomic chemical ecology: From genetic code to ecological interactions. J. Chem. Ecol., 28: 873896. doi: 10.1023/A:1015260931034

Buratti, F. M. and Testai, E. (2005) Malathion detoxification by human hepatic carboxylesterases and its inhibition by isomalathion and other pesticides. J. Biochem. Mol. Toxicol., 19: 406414. doi: 10.1002/jbt.20106

Carr, A. L. and Roe, M. (2016) Acarine attractants: chemoreception, bioassay, chemistry and control. Pestic. Biochem. Phys., 131: 6079. doi: 10.1016/j.pestbp.2015.12.009

Chung, J. S. (2010) Hemolymph ecdysteroids during the last three molt cycles of the blue crab, Callinectes sapidus: Quantitative and qualitative analyses and regulation. Arch. Insect. Biochem. Physiol., 73: 113. doi: 10.1002/arch.20327

Cui, J. R. et al. (2024) A new spider mite elicitor triggers plant defence and promotes resistance to herbivores. J. Exp. Bot., 75: 14931509. doi: 10.1093/jxb/erad452

de Moraes, G. J. and McMurtry, J. A. (1986) Suitability of the spider mite Tetranychus evansi as prey for Phytoseiulus persimilis. Entomol. Exp. Appl., 40: 109115. doi: 10.1111/j.1570-7458.1986.tb00490.x

Erban, T. and Hubert, J. (2010) Determination of pH in regions of the midguts of acaridid mites. J. Insect Sci., 10: 42. doi: 10.1673/031.010.4201

古橋嘉一・森本輝一 (1989) ハダニ類の合成ピレスロイド剤によるリサージェンスと防止対策. 植物防疫, 43: 375379.

Gomi, K. and Gotoh, T. (1996) Host plant preference and genetic compatibility of the Kanzawa spider mite, Tetranychus kanzawai Kishida (Acari: Tetranychidae). Appl. Entomol. Zool., 31: 417425. doi: 10.1303/aez.31.417

Gomi, K. and Gotoh, T. (1997) Genetic basis for host range in Tetranychus kanzawai Kishida (Acari: Tetranychidae). Appl. Entomol. Zool., 32: 638641. doi: 10.1303/aez.32.638

Goto, S. G. (2016) Physiological and molecular mechanisms underlying photoperiodism in the spider mite: Comparisons with insects. J. Comp. Physiol. B, 186: 969984. doi: 10.1007/s00360-016-1018-9

Grbić, M. et al. (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 479: 487492. doi: 10.1038/nature10640

Hayashi, N. et al. (2013) Cyflumetofen, a novel acaricide its mode of action and selectivity. Pest Manag. Sci., 69: 10801084. doi: 10.1002/ps.3470

Horiuchi, J. et al. (2001) Exogenous ACC enhances volatiles production mediated by jasmonic acid in lima bean leaves. FEBS Lett., 509: 332336. doi: 10.1016/s0014-5793(01)03194-5

Horiuchi, J. et al. (2003) A comparison of the responses of Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae) to volatiles emitted from lima bean leaves with different levels of damage made by T. urticae or Spodoptera exigua (Lepidoptera: Noctuidae). Appl. Entomol. Zool., 38: 109116. doi: 10.1303/aez.2003.109

Horsefield, R. et al. (2006) Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase). A mechanism of electron transfer and proton conduction during ubiquinone reduction. J. Biol. Chem., 281: 73097316. doi: 10.1074/jbc.M508173200

Iida J. et al. (2019) Tetranins: new putative spider mite elicitors of host plant defense. New Phytol., 224: 875885. doi: 10.1111/nph.15813

Jeschke, P. (2015) Propesticides and their use as agrochemicals. Pest Manag. Sci., 72: 210225. doi: 10.1002/ps.4170

Johnson, C. G. (1969) Migration and Dispersal of Insects by Flight. Methuen & Co., Ltd.

Jonckheere, W. et al. (2016) The salivary protein repertoire of the polyphagous spider mite Tetranychus urticae: A quest for effectors. Mol. Cell. Proteom., 15: 35943613. doi: 10.1074/mcp.M116.058081

木村雅行 (2020) IRACによる農業用殺虫剤の国際的分類. 農業新時代, 1: 1316.

Kinto, S. et al. (2023) Spider mites avoid caterpillar traces to prevent intraguild predation. Sci. Rep., 13: 1841. doi: 10.1038/s41598-023-28861-0

Koller, M. et al. (2007) Direct and indirect adverse effects of tomato on the predatory mite Neoseiulus californicus feeding on the spider mite Tetranychus evansi. Entomol. Exp. Appl., 125: 297305. doi: 10.1111/j.1570-7458.2007.00625.x

Kuwahara, M. (1981) Relationship between high esterase activity and in vitro degradation of 14C-malathion by organophosphate-resistant and susceptible strains of the Kanzawa spider mite, Tetranychus kanzawai Kishida (Acarina: Tetranychidae), and their inhibition with specific synergists. Appl. Entomol. Zool., 16: 297305. doi: 10.1303/aez.16.297

Kuwahara, M. (1982) Activity and substrate specificity of the esterase associated with organophosphorus insecticide resistance in the Kanzawa spider mite, Tetranychus kanzawai Kishida (Acarina: Tetranychidae). Appl. Entomol. Zool., 17: 8291. doi: 10.1303/aez.17.82

桑原雅彦 (1984) カンザワハダニの薬剤抵抗性に関する研究. 農技研報C, 39: 175.

Leal, W. S. (2012) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol. 58: 373391. doi: 10.1146/annurev-ento-120811-153635

Li, G. et al. (2017) Characterization and expression patterns of key ecdysteroid biosynthesis and signaling genes in a spider mite (Panonychus citri). Insect Biochem. Mol. Biol., 87: 136146. doi: 10.1016/j.ibmb.2017.06.009

Li, G. et al. (2019) Expression dynamics of key ecdysteroid and juvenile hormone biosynthesis genes imply a coordinated regulation pattern in the molting process of a spider mite, Tetranychus urticae. Exp. Appl. Acarol., 78: 361372. doi: 10.1007/s10493-019-00396-y

Li, J. et al. (2023) Molecular basis for the selectivity of the succinate dehydrogenase inhibitor cyflumetofen between pest and predatory mites. J. Agric. Food Chem., 71: 36583669. doi: 10.1021/acs.jafc.2c06149

Li, X. et al. (2022) Identification of the fibroin of Stigmaeopsis nanjingensis by a nanocarrier-based transdermal dsRNA delivery system. Exp. Appl. Acarol., 87: 3147. doi: 10.1007/s10493-022-00718-7

Lozano-Pérez, A. A. et al. (2020) The silk of gorse spider mite Tetranychus lintearius represents a novel natural source of nanoparticles and biomaterials. Sci. Rep., 10: 18471. doi: 10.1038/s41598-020-74766-7

Marsden, G. et al. (2008) Methyl farnesoate inhibition of late stage ovarian development and fecundity reduction in the black tiger prawn, Penaeus monodon. Aquaculture, 280: 242246. doi: 10.1016/j.aquaculture.2008.04.031

Miyakawa, H. et al. (2013) A mutation in the receptor Methoprene-tolerant alters juvenile hormone response in insects and crustaceans. Nat. Commun., 4: 1856. doi: 10.1038/ncomms2868

Motoyama, N. et al. (1980) Multiple factors for organophosphorus resistance in the housefly, Musca domestica L. J. Pesticide Sci., 5: 393402. doi: 10.1584/jpestics.5.393

Mullin, C. A. and Croft, B. A. (1983) Host-related alterations of detoxification enzymes in Tetranychus urticae (Acari: Tetranychidae). Environ. Entomol., 12: 12781282. doi: 10.1093/ee/12.4.1278

Nakano, M. et al. (2015) Mode of action of novel acaricide pyflubumide: effects on the mitochondrial respiratory chain. J. Pestic. Sci., 40: 1924. doi: 10.1584/jpestics.D14-086

丹羽隆介 (2016) 昆虫エクジステロイド生合成にかかわる酵素群と昆虫成長制御剤の開発. 化学と生物, 54: 508513. doi: 10.1271/kagakutoseibutsu.54.508

Niwa, R. et al. (2010) Non-molting glossy/shroud encodes a short-chain dehydrogenase/reductase that functions in the Black Box of the ecdysteroid biosynthesis pathway. Development, 137: 19911999. doi: 10.1242/dev.045641

Ojeda-Martinez D. et al. (2021) Spider mite egg extract modifies Arabidopsis response to future infestations. Sci. Rep., 11: 17692. doi: 10.1038/s41598-021-97245-z

Ozawa, R. et al. (2000) Involvement of jasmonate- and salicylate-related signaling pathway for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol., 41: 391398. doi: org/10.1093/pcp/41.4.391

Regev, S. and Cone, W. W. (1975) Evidence of farnesol as a male sex attractant of the two spotted spider mite, Tetranychus urticae Koch (Acarina: Tetranychidae), Environ. Entomol., 4: 307311. doi: 10.1093/ee/4.2.307

Regev, S. and Cone, W. W. (1976) Analyses of pharate female two spotted spider mites for nerolidol and geraniol: evaluation for sex attraction of males, Environ. Entomol., 5: 133138. doi: 10.1093/ee/5.1.133

Regev, S. and Cone, W. W. (1980) The monoterpene citronellol, as a male sex attractant of thetwo spotted spider mite, Tetranychus urticae (Acarina: Tetranychidae), Environ. Entomol., 9: 5052. doi: 10.1093/ee/9.1.50

Rewitz, K. F. et al. (2010) Steroid hormone inactivation is required during the juvenile-adult transition in Drosophila. Dev. Cell, 19: 895902. doi: 10.1016/j.devcel.2010.10.021

Royalty, R. N. et al. (1992) Arrestment of male twospotted spider mite caused by female sex pheromone. J. Chem. Ecol., 18: 137153. doi: 10.1007/BF00993749

Sabelis, M. W. and van de Baan, H. E. (1983) Location of distant spider mite colonies by phytoseiid predators: Demonstration of specific kairomones emitted by Tetranychus urticae and Panonychus ulmi. Entomol. Exp. Appl., 33: 303314. doi: 10.1111/j.1570-7458.1983.tb03273.x

齋藤 裕 (2012) ダニと糸. 「糸の博物誌」 (齋藤 裕・佐原 健共編). 海游舎.

Santamaría, M. E. et al. (2015) Digestive proteases in bodies and faeces of the two-spotted spider mite, Tetranychus urticae. J. Insect Physiol., 78: 6977. doi: 10.1016/j.jinsphys.2015.05.002

Sato, Y. and Alba, J. M. (2020) Reproductive interference and sensitivity to female pheromones in males and females of two herbivorous mite species. Exp. Appl. Acarol., 81: 5974. doi: 10.1007/s10493-020-00492-4

Schmelz E. A. et al. (2009) Phytohormone-based activity mapping of insect herbivore-produced elicitors. PNAS, 106: 653657. doi: 10.1073/pnas.0811861106

島野智之 (2018) ダニ類の高次分類体系の改定について—高次分類群の一部の和名改称を含む. 日本ダニ学会誌, 27: 5168. doi: 10.2300/acari.27.51

Shimell, M. and O’Connor, M. B. (2022) The cytochrome P450 Cyp6t3 is not required for ecdysone biosynthesis in Drosophila melanogaster. microPubl. Biol. doi: 10.17912/micropub.biology.000611

Shimoda, T. et al. (2002) Olfactory responses of two specialist insect predators of spider mites toward plant volatiles from lima bean leaves induced by jasmonic acid and/or methyl salicylate. Appl. Entomol. Zool., 37: 535541. doi: 10.1303/aez.2002.535

篠田徹郎ほか (2015) 生合理的殺虫剤の標的としての幼若ホルモン関連分子. 日本農薬学会誌, 40: 5867. doi: 10.1584/jpestics.W14-37

Stone, C. (1986) An investigation into the morphology and biology of Tetranychus lintearius Dufour (Acari: Tetranychidae). Exp. Appl. Acarol., 2: 173186. doi: 10.1007/BF01213760

Sudo, M. et al. (2018) Optimal management strategy of insecticide resistance under various insect life histories: heterogeneous timing of selection and inter-patch dispersal. Evol. Appl., 11: 271283. doi: 10.1111/eva.12550

Suzuki, H. et al. (2011) Kanzawa spider mites acquire enemy-free space on a detrimental host plant, oleander. Entomol. Exp. Appl., 138: 212222. doi: 10.1111/j.1570-7458.2010.01092.x

田島隆宣ほか (2007a) 同所的に発生するカンザワハダニTetranychus kanzawai (Acari: Tetranychidae) の寄主利用能力の分化. 日本ダニ学会誌, 16: 2127. doi: 10.2300/acari.16.21

田島隆宣ほか (2007b) 発育期に利用した寄主植物がカンザワハダニTetranychus kanzawai (Acari: Tetranychidae) 雌成虫の寄主選好性に及ぼす影響. 日本ダニ学会誌, 16: 121127. doi: 10.2300/acari.16.121

Takabayashi, J. (2022) Herbivory-induced plant volatiles mediate multitrophic relationships in ecosystems. Plant Cell Physiol., 63: 13441355. doi: 10.1093/pcp/pcac107.

Takabayashi, J. et al. (1994) Volatile herbivore induced terpenoids in plant-mite interactions: Variation caused by biotic and abiotic factors. J. Chem. Ecol., 20: 13241354. doi: 10.1007/BF02059811.

Takahashi, D. et al. (2017) Is a larger refuge always better? Dispersal and dose in pesticide resistance evolution. Evolution, 71: 14941503. doi: 10.1111/evo.13255

Takeyama, K. et al. (2006) Effect of cytochrome P450 inhibitor, piperonyl butoxide, on survival of Panonychus citri (McGregor) (Acari: Tetranychidae) on citrus leaves. Appl. Entomol. Zool., 41: 487491. doi: 10.1303/aez.2006.487

Van Leeuwen, T. et al. (2006) Complete maternal inheritance of bifenazate resistance in Tetranychus urticae Koch (Acari: Tetranychidae) and its implications in mode of action considerations. Insect Biochem. Mol. Biol., 36: 869877. doi: 10.1016/j.ibmb.2006.08.005

Van Leeuwen, T. et al. (2007) Organophosphate insecticides and acaricides antagonize bifenazate toxicity through esterase inhibition in Tetranychus urticae. Pest Manag. Sci., 63: 11721177. doi: 10.1002/ps.1453

Vet, L. E. M. and Dicke, M. (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol., 37: 141172. doi: 10.1146/annurev.en.37.010192.001041

Villarroel C. A. et al. (2016) Salivary proteins of spider mites suppress defenses in Nicotiana benthamiana and promote mite reproduction. Plant J., 86: 119131. doi: 10.1111/tpj.13152

山本敦司 (2018) 殺ダニ剤の開発とハダニ類防除技術の最近の動向. 「農薬の創製研究の動向. 安全で環境に優しい農薬開発の展開」(梅津憲治監修). pp. 113127, シーエムシー出版.

山本敦司・川口昌宏 (2023) 殺ダニ剤の開発動向と総合防除・IPM. 基盤のハダニ類防除技術の最近のシンポ. 「化学農薬・生物農薬およびバイオスティミュラントの創製研究の動向」(梅津憲治監修). pp. 108139, シーエムシー出版.

Yano, S. et al. (2022) Avoidance of ant chemical traces by spider mites and its interpretation. Exp. Appl. Acarol., 88: 153163. doi: 10.1007/s10493-022-00752-5

Yoshioka, T. et al. (2019) A study of the extraordinarily strong and tough silk produced by bagworms. Nat. Commun., 10: 1469. doi: 10.1038/s41467-019-09350-3

Yoshiyama, T. et al. (2006) Neverland is an evolutionally conserved Rieske-domain protein that is essential for ecdysone synthesis and insect growth. Development, 133: 25652574. doi: 10.1242/dev.02428

Yu, S. J. (1982a) Host plant induction of glutathione S-transferase in the fall armyworm. Pestic. Biochem. Phys., 18: 101106. doi: 10.1016/0048-3575(82)90092-X

Yu, S. J. (1982b) Induction of microsomal oxidases by host plants in the fall armyworm, Spodoptera frugiperda (J. E. Smith). Pestic. Biochem. Phys., 17: 5967. doi: 10.1016/0048-3575(82)90126-2

Zhang, Y. et al. (2018) Multiple mutations and overexpression of the MdaE7 carboxylesterase gene associated with male-linked malathion resistance in hosefly, Musca domestica (Diptera: Muscidae). Sci. Rep., 8: 224. doi: 10.1038/s41598-017-17325-x

Zhu, J. et al. (2021) The odorant-binding proteins of the Spider mite Tetranychus urticae. Int. J. Mol. Sci., 22: 6828. doi: 10.3390/ijms22136828

 

第6章 行動・生態

Atmer, W. (1991) On the role of males. Anim. Behav., 41: 195205. doi: 10.1303/jjaez.2018.215

Beavers, J. B. and Hampton, R. B. (1971) Growth, development, and mating behavior of the citrus red mite (Acarina: Tetranychidae). Ann. Entomol. Soc. Am., 64: 804806. doi: 10.1093/aesa/64.4.804

Ben-David, T. et al. (2009) Asymmetric reproductive interference between two closely related spider mites: Tetranychus urticae and T. turkestani (Acari: Tetranychidae). Exp. Appl. Acarol., 48: 213227. doi: 10.1007/s10493-008-9228-9

Bitume, E. V. et al. (2013) Density and genetic relatedness increase dispersal distance in a subsocial organism. Ecol. Lett., 16: 430437. doi: 10.1111/ele.12057

Breewer, J. A. J. (1997) Wolbachia and cytoplasmic incompatibility in the spider mites Tetranychus urticae and T. turkestani. Heredity, 79: 4147. doi: 10.1038/hdy.1997.121

Chae, Y. et al. (2015) Reproductive isolation between Stigmaeopsis celarius and its sibling species sympatrically inhabiting bamboo (Pleioblastus spp.) plants. Exp. Appl. Acarol., 66: 123. doi: 10.1007/s10493-014-9865-0

Chittenden, A. R. and Saito, Y. (2006) Tactile crypsis against non-visual predators in the spider mite, Aponychus corpuzae Rimando (Acari: Tetranychidae). J. Insect Behav., 19: 419428. doi: 10.1007/s10905-006-9019-2

Clemente, S. H. et al. (2018) Despite reproductive interference, the net outcome of reproductive interactions among spider mite species is not necessarily costly. Behav. Ecol., 29: 321327. doi: 10.1093/beheco/arx161

Collins, R. D. and Margolies, D. C. (1991) Possible ecological consequences of heterospecific mating behavior in two tetranychid mites. Exp. Appl. Acarol., 13: 97105. doi: 10.1007/BF01193660

Cone, W. W. (1985) Mating and chemical communication. In: Spider Mites. Their Biology, Natural Enemies and Control. Volume 1A (Helle, W. and Sabelis, M. W. eds.). pp. 243252, Elsevier.

Cone, W. W. et al. (1971) Pheromone studies of the two spotted spider mite. 1. Evidence of a sex pheromone. J. Econ. Entomol., 64: 355358. doi: 10.1093/jee/64.2.355

Crozier, R. H. (1985) Adaptive consequences of male-haploidy. In: Spider Mites. Their Biology, Natural Enemies and Control. Volume 1A (Helle, W. and Sabelis, M. W. eds.). pp. 201222, Elsevier.

Cruz, M. A. et al. (2021) Wolbachia and host intrinsic reproductive barriers contribute additively to postmating isolation in spider mites. Evolution, 75: 20852102. doi: 10.1111/evo.14286

Dicke, M. et al. (1990) Isolation and identification of volatile kairomone that affects acarine predatorprey interactions Involvement of host plant in its production. J. Chem. Ecol., 16: 381396. doi: 10.1007/BF01021772

Ehara, S. and Gotoh, T. (1992) Descriptions of Two Panonychus Spider Mites from Japan, with a Key to Species of the Genus in the World (Acari: Tetranychidae). Appl. Entomol. Zool., 27: 107115. doi: 10.1303/aez.27.107

Enders, M. M. (1993) The effect of male size and operational sex ratio on male mating success in the common spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Anim. Behav., 46: 835846. doi: 10.1006/anbe.1993.1269

Ferragut, F. et al. (2013) The invasive spider mite Tetranychus evansi (Acari: Tetranychidae) alters community composition and host-plant use of native relatives. Exp. Appl. Acarol., 60: 321341. doi: 10.1007/s10493-012-9645-7

Gerson, U. (1985) Webbling. In: Spider Mites. Their Biology, Natural Enemies and Control. Volume 1A (Helle, W. and Sabelis, M. W. eds.). pp. 223232, Elsevier.

Gotoh, T. et al. (2005) Wolbachia and nuclearnuclear interactions contribute to reproductive incompatibility in the spider mite Panonychus mori (Acari: Tetranychidae). Heredity, 94: 237246. doi: 10.1038/sj.hdy.6800605

Gutierrez, J. and Helle, W. (1985) Evolutionary changes in the Tetranychidae. In: Spider Mites. Their Biology, Natural Enemies and Control. Volume 1A (Helle, W. and Sabelis, M. W. eds.). pp. 91107, Elsevier.

Harrison, F. W. (1999) Microscopic Anatomy of Invertebrates vol. 8C Chelicerate Arthropoda. Wiley-Liss.

Hartl, D. L. (1972) A fundamental theorem of natural selection for sex linkage or arrhenotoky. Am. Nat., 106: 516524.

Helle, W. (1965) Inbreeding Depression in an Arrhenotokous Mite (Tetranychus urticae Koch). Entomol. Exp. Appl., 8: 299304. doi: 10.1111/j.1570-7458.1965.tb00865.x

Helle, W. (1967) Fertilization in the two-spotted spider mite (Tetranychus urticae: Acari). Entomol. Exp. Appl., 10: 103110. doi: 10.1111/j.1570-7458.1967.tb00049.x

Hinomoto, N. and Takafuji, A. (1994) Studies on the population structure of the two-spotted spider mite, Tetranychus urticae Koch, by allozyme variability analysis. Appl. Entomol. Zool., 29: 259266.

Horita, M. et al. (2004) Function of the web box as an anti-predator barrier in the spider mite, Schizotetranychus recki. J. Ethol., 22: 105108. doi: 10.1007/s10164-003-0101-3

Ito, K. (2019) Lethal attack of Schizotetranychus brevisetosus Ehara (Acari: Tetranychidae) on predatory midge larva. Syst. Appl. Acarol., 24: 187193. doi: 10.11158/saa.24.2.1

Ito, K. and Ioku, Y. (2022) A novel type of counterattack against predatory thrips in Schizotetranychus brevisetosus (Acari: Tetranychidae). Int. J. Acarol., 48: 207213. doi: 10.1080/01647954.2022.2055141

Kanazawa, M. et al. (2011) Silk threads function as an adhesive cleaner for nest space in a social spider mite. Proc. R. Soc. B Biol. Sci., 278: 16531660. doi: 10.1098/rspb.2010.1761

Kikuchi, A. and Tanaka, M. (2010) Nest microflora in the social spider mite, Stigmaeopsis longus (Acari: Tetranychidae). In: Trends in Acarology. pp. 313315, Springer.

Kinto, S. et al. (2023) Spider mites avoid caterpillar traces to prevent intraguild predation. Sci. Rep., 13: 1841. doi: 10.1038/s41598-023-28861-0

Kobayashi, H. et al. (2022) Males mate with females even after sperm depletion in the two-spotted spider mite. Exp. Appl. Acarol., 86: 465477. doi: 10.1007/s10493-022-00706-x

Kondo, A. and Takafuji, A. (1985) Resource utilization pattern of two species of tetranychid mites (Acarina: Tetranychidae). Res Popul. Ecol., 27: 145157. doi: 10.1007/BF02515487

Krainacker, D. A. adn Carey, J. R. (1989) Reproductive limits and heterogeneity of male twospotted spider mites. Entomol. Exp. Appl., 50: 209214. doi: 10.1111/j.1570-7458.1989.tb01194.x

国本佳範ほか (1991) ミカンハダニ系統間およびリンゴハダニとの種間の生殖的隔離に関する研究. 日本応用動物昆虫学会誌, 35: 103108. doi: 10.1303/jjaez.35.103

Kuno, E. (1992) Competitive exclusion through reproductive interference. Res. Popul. Ecol., 34: 275284. doi: 10.1007/BF02514797

Margolies, D. C. and Collins, R. D. (1994) Chemically-mediated pre-mating behavior in two tetranychid species. Exp. Appl. Acarol., 18: 493501. doi: 10.1007/BF00051471

Masuda, C. et al. (2015) Lethal male combats in Schizotetranychus brevisetosus (Acari: Tetranychidae) on blue Japanese oak (Quercus glauca). Exp. Appl. Acarol., 67: 259268. doi: 10.1007/s10493-015-9938-8

Matsuda, T. et al. (2014) Phylogenetic analysis of the spider mite sub-family Tetranychinae (Acari: Tetranychidae) based on the mitochondrial COI gene and the 18S and the 5' end of the 28S rRNA genes indicates that several genera are polyphyletic. PLOS ONE, 9: e108672. doi: 10.1371/journal.pone.0108672

Matsuda, T. et al. (2018) Phylogeny of the spider mite sub-family Tetranychinae (Acari: Tetranychidae) inferred from RNA-Seq data. PLOS ONE, 13: e0203136. doi: 10.1371/journal.pone.0203136

Maynard Smith, J. and Price, G. R. (1973) The logic of animal conflict. Nature, 246: 1518. doi: 10.1038/246015a0

Maynard-Smith, J. (1982) Evolution and the Theory of Games. Cambridge University Press.

McMurtry, J. A. and Croft, B. A. (1997) Life-styles of phyitoseiid mites and their roles in biological control. Annu. Rev. Entomol., 42: 291321. doi: 10.1146/annurev.ento.42.1.291

McMurtry, J. A. et al. (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst. Appl. Acarol., 18: 297320. doi: 10.11158/saa.18.4.1

Mori, K. and Saito, Y. (2004) Nest-size variation reflecting anti-predator strategies in social spider mites of Stigmaeopsis (Acari: Tetranychidae). Behav. Ecol. Sociobiol., 56: 201206. doi: 10.1007/s00265-004-0776-7

Mori, K. and Saito, Y. (2005) Variation in social behavior within a spider mite genus, Stigmaeopsis (Acari: Tetranychidae). Behav. Ecol., 16: 232238. doi: 10.1093/beheco/arh157

Mori, K. et al. (1999) Effects of the nest web and female attendance on survival of young in the subsocial spider mite Schizotetranychus longus (Acari: Tetranychidae). Exp. Appl. Acarol., 23: 411418. doi: 10.1023/A:1006165606428

Morita, A. et al. (2020) Effectiveness of second mating in sperm-depleted females in the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Syst. Appl. Acarol., 25: 15611575. doi: 10.11158/saa.25.9.4

Morita, A. et al. (2021) Effects of male and female age on mating success in Tetranychus urticae Koch (Acari: Tetranychidae). Syst. Appl. Acarol., 12801292. doi: 10.11158/saa.26.7.8

Murray, M. G. (1989) Environmental constraints on fighting in flightless male fig wasps. Anim. Behav., 38: 186193. doi: 10.1016/S0003-3472(89)80081-8

Naundrup et al. (2022) Pathogenic fungus uses volatiles to entice male flies into fatal matings with infected female cadavers. ISME J., 16: 23882397. doi: 10.1038/s41396-022-01284-x

Navajas, M. et al. (2000) Genetic differentiation in Tetranychus urticae (Acari: Tetranychidae): polymorphism, host races or sibling species? Exp. Appl. Acarol., 24: 365376. doi: 10.1023/A:1006432604611

Okada, S. and Yano, S. (2021) Oviposition-site shift in phytophagous mites reflects a trade-off between predator avoidance and rainstorm resistance. Biol. Lett., 17: 3. doi: 10.1098/rsbl.2020.0669

Oku, K. (2008) Is only the first mating effective for females in the Kanzawa spider mite, Tetranychus kanzawai (Acari: Tetranychidae)? Exp. Appl. Acarol., 45: 5357. doi: 10.1007/s10493-008-9157-7

Oku, K. (2009) Female mating strategy during precopulatory mate guarding in spider mites. Anim. Behav., 77: 207211. doi: 10.1016/j.anbehav.2008.09.030

Oku, K. (2010) Males of the two-spotted spider mite attempt to copulate with mated females: Effects of double mating on fitness of either sex. Exp. Appl. Acarol., 50: 107113. doi: 10.1007/s10493-009-9306-7

Oku, K. and Shimoda, T. (2013) Indirect evidence that guarded quiescent deutonymph females invest energy to attract conspecific males in the Kanzawa spider mite (Acari: Tetranychidae)? Exp. Appl. Acarol., 60: 445449. doi: 10.1007/s10493-013-9662-1

Oku, K. et al. (2003) Spider mites assess predation risk by using the odor of injured conspecifics. J. Chem. Ecol., 29: 26092613. doi: 10.1023/A:1026395311664

Oku, K. et al. (2005) Mating strategies of Tetranychus kanzawai (Acari: Tetranychidae) in relation to mating status of females. Ann. Entomol. Soc. Am., 98: 625628. doi: 10.1603/0013-8746(2005)098[0625:MSOTKA]2.0.CO;2

Oku, K. et al. (2015) Altered volatile profile associated with precopulatory mate guarding attracts spider mite males. J. Chem. Ecol., 41: 187193. doi: 10.1007/s10886-015-0547-0

Osakabe, M. and Komazaki, S. (1996) Host range segregation and reproductive incompatibility among Panonychus citri populations infesting Osmanthus trees and other host plants. Appl. Entomol. Zool., 31: 397406. doi: 10.1303/aez.31.397

Osakabe, M. et al. (2008) Aerodynamic advantages of upside down take-off for aerial dispersal in Tetranychus spider mites. Exp. Appl. Acarol., 44: 165183.

Otsuki, H. and Yano, S. (2014) Potential lethal and non-lethal effects of predators on dispersal of spider mites. Exp. Appl. Acarol., 64: 265275. doi: 10.1007/s10493-014-9824-9

Otsuki, H. and Yano, S. (2017) Within-patch oviposition site shifts by spider mites in response to prior predation risks decrease predator patch exploitation. Ethology, 123: 453459. doi: 10.1111/eth.12615

小澤朗人・高藤晃雄 (1987) ナミハダニとカンザワハダニの種間交配. 日本応用動物昆虫学会誌, 31: 5154. doi: 10.1303/jjaez.31.51

Perrot-Minnot, M.-J. et al. (2004) Intergenomic interactions affect female reproduction: Evidence from introgression and inbreeding depression in a haplodiploid mite. Heredity, 93: 551. doi: 10.1038/sj.hdy.6800552

Potter, D. A. and Wrensch, D. L. (1978) Interrupted matings and the effectiveness of second inseminations in the twospotted spider mite. Ann. Entomol. Soc. Am., 71: 882885. doi: 10.1093/aesa/71.6.882

Potter, D. A. et al. (1976a) Aggression and mating success in male spider mites. Science, 193: 16061. doi: 10.1126/science.193.4248.160

Potter, D. A. et al. (1976b) Guarding, aggressive behavior, and mating success in male twospotted spider mites. Ann. Entomol. Soc. Am., 69: 707711. doi: 10.1093/aesa/69.4.707

Rasmy, A. H. and Hussein, H. E. (1994) Effect of age and mating on release of female sex pheromones and male response in the two-spotted spider mite. J. Appl. Entomol., 117: 109111. doi: 10.1111/j.1439-0418.1994.tb00714.x

Ray, H. A. and Hoy, M. A. (2014) Evaluation of the predacious mite Hemicheyletia wellsina (Acari: Cheyletidae) as a predator of arthropod pests of orchids. Exp. Appl. Acarol., 64: 287298. doi: 10.1007/s10493-014-9833-8

Reinhold, K. (2003) Influence of male relatedness on lethal combat in fig wasps: A theoretical analysis. Proc. R. Soc. B Biol. Sci., 270: 11711175. doi: 10.1098/rspb.2003.2368

Rodrigues, L. R. et al. (2017) Male spider mites use chemical cues, but not the female mating interval, to choose between mates. Exp. Appl. Acarol., 71: 113. doi: 10.1007/s10493-016-0103-9

Rodrigues, L. R. et al. (2020) Costs and benefits of multiple mating in a species with first-male sperm precedence. J. Anim. Ecol., 89: 10451054. doi: 10.1111/1365-2656.13171

Roeder, C. et al. (1996) The effects of relatedness on progeny sex ratio in spider mites. J. Evol. Biol., 9: 143151. doi: 10.1046/j.1420-9101.1996.9020143.x

Ros, V. I. D. and Breeuwer, J. A. J. (2009) The effects of, and interactions between, Cardinium and Wolbachia in the doubly infected spider mite Bryobia sarothamni. Heredity, 102: 413422. doi: 10.1038/hdy.2009.4

Royalty, R. N. et al. (1992) Arrestment of male twospotted spider mite caused by female sex pheromone. J. Chem. Ecol., 18: 137153. doi: 10.1007/BF00993749

Royalty, R. N. et al. (1993a) Comparative effects of form, colour, and pheromone of twospotted spider mite quiescent deutonymphs on male guarding behaviour. Physiol. Entomol., 18: 303316. doi: 10.1111/j.1365-3032.1993.tb00603.x

Royalty, R. N. et al. (1993b) Quantitative and temporal analysis of effects of twospotted spider mite (acari: Tetranychidae) female sex pheromone on male guarding behavior. J. Chem. Ecol., 19: 211223. doi: 10.1007/BF00993690

Sabelis, M. W. and van de Baan, H. E. (1983) Location of distant spider mite colonies by phytoseiid predators: Demonstration of specific kairomones emitted by Tetranychus urticae and Panonychus ulmi. Entomol. Exp. Appl., 33: 303314. doi: 10.1111/j.1570-7458.1983.tb03273.x

Saito, Y. (1983) The concept of "life types" in Tetranychinae. An attempt to classify the spinning behaviour of Tetranychinae. Acarologia, 24: 377391.

Saito, Y. (1985) Life types of spider mites. In: Spider Mites. Their Biology, Natural Enemies and Control. Volume 1A (Helle, W. and Sabelis, M. W. eds.). pp. 253264, Elsevier.

Saitō, Y. (1986a) Biparental defence in a spider mite (Acari: Tetranychidae) infesting Sasa bamboo. Behav. Ecol. Sociobiol., 18: 377386. doi: 10.1007/BF00299668

Saitō, Y. (1986b) Prey kills predator: Counter-attack success of a spider mite against its specific phytoseiid predator. Exp. Appl. Acarol., 2: 4762. doi: 10.1007/BF01193354

Saito, Y. (1987) Extraordinary effects of fertilization status on the reproduction of an arrhenotokous and sub-social spider mites (Acarina: Tetranychidae). Res. Popul. Ecol., 29: 5771. doi: 10.1007/BF02515425

Saito, Y. (1990a) Factors determining harem ownership in a subsocial spider mite (Acari, Tetranychidae). J. Ethol., 8: 3743. doi: 10.1007/BF02350272

Saitō, Y. (1990b) Harem and non-harem type mating systems in two species of subsocial spider mites (Acari, Tetranychidae). Res. Popul. Ecol., 32: 263278. doi: 10.1007/BF02512562

齋藤 裕 (1992) ハダニの亜社会性—協調と攻撃性の進化. 「動物社会における共同と攻撃」(伊藤嘉昭編). pp. 1952, 東海大学出版部.

Saito, Y. (1994) Do males of Schizotetranychus miscanthi (Acari, Tetranychidae) recognize kin in male competition? J. Ethol., 12: 1517. doi: 10.1007/BF02350075

Saito, Y. (1995) Clinal variation in male-to-male antagonism and weaponry in a subsocial mite. Evolution, 49: 413417. doi: 10.1111/j.1558-5646.1995.tb02273.x

齋藤 裕 (1996a) ダニ類の亜社会性—血縁選択は本当に作用したのか?「親子関係の進化生態学」(齋藤 裕編). pp. 111136, 北海道大学学術出版会.

齋藤 裕 (1996b) 行動. 「植物ダニ学」(江原昭三・真梶徳純編). pp. 105124, 全国農村教育協会.

齋藤 裕 (1999) ミクロの社会生態学—ダニから動物社会を考える. 京都大学学術出版会.

Saito, Y. (2010) Plant Mites and Sociality: Diversity and Evolution. Springer-Verlag.

齋藤 裕 (2018) スゴモリハダニ類 (ダニ目: ハダニ科) の生物学. 日本応用動物昆虫学会誌, 62: 215229. doi: 10.1303/jjaez.2018.215

Saito, Y. and Sahara, K. (1999) Two clinal trends in male-male aggressiveness in a subsocial spider mite (Schizotetranychus miscanthi). Behav. Ecol. Sociobiol., 46: 2529. doi: 10.1007/s002650050588

齋藤 裕・佐原 健 (2012) 「糸の博物誌—ムシたちが糸で織りなす多様な世界」. 海游舎.

Saito, Y. and Zhang, Y.-X. (2017) Locking out predators by silk, a new counterattack behaviour in a social spider mite. Ecol. Entomol., 42: 422429. doi: 10.1111/een.12402

Saito, Y. et al. (2000) Inbreeding depression by recessive deleterious genes affecting female fecundity of a haplo-diploid mite. J. Evol. Biol., 13: 668678. doi: 10.1046/j.1420-9101.2000.00198.x

Saito, Y. et al. (2002) Differences in diapause attributes between two clinal forms distinguished by male-to-male aggression in a subsocial spider mite, Schizotetranychus miscanthi Saito. Ecol. Res., 17: 645653. doi: 10.1046/j.1440-1703.2002.00522.x

Saito, Y. et al. (2011) Counterattack success of a social spider mite against two predominant phytoseiid predator species. Exp. Appl. Acarol., 55: 249258. doi: 10.1007/s10493-011-9473-1

Saito, Y. et al. (2016a) Two new species and four new life types in Tetranychidae. Ann. Entomol. Soc. Am., 109: 463472. doi: 10.1093/aesa/sav158

Saito, Y. et al. (2016b) Variation in nesting behavior of eight species of spider mites, Stigmaeopsis having sociality. Sci. Nat., 103: 87. doi: 10.1007/s00114-016-1408-6

Sakamoto, H. et al. (2017) Molecular identification of seven species of the genus Stigmaeopsis (Acari: Tetranychidae) and preliminary attempts to establish their phylogenetic relationship. Syst. Appl. Acarol., 22: 91101. doi: 10.11158/saa.22.1.10

Sato, Y. and Saito, Y. (2006) Nest sanitation in social spider mites: interspecific differences in defecation behavior. Ethology, 112: 664669. doi: 10.1111/j.1439-0310.2005.01184.x

Sato, Y. et al. (2003) Rules for nest sanitation in a social spider mite, Schizotetranychus miscanthi Saito (Acari: Tetranychidae). Ethology, 109: 713724. doi: 10.1046/j.1439-0310.2003.00905.x

Sato, Y. et al. (2008) The parapatric distribution and contact zone of two forms showing different male-to-male aggressiveness in a social spider mite, Stigmaeopsis miscanthi (Acari: Tetranychidae). Exp. Appl. Acarol., 44: 265276. doi: 10.1007/s10493-008-9147-9

Sato, Y. et al. (2013a) Alternative phenotypes of male mating behaviour in the two-spotted spider mite. Exp. Appl. Acarol., 61: 3141. doi: 10.1007/s10493-013-9673-y

Sato, Y. et al. (2013b) Malemale aggression peaks at intermediate relatedness in a social spider mite. Ecol. Evol., 3: 26612669. doi: 10.1002/ece3.661

Sato, Y. et al. (2014a) Alternative male mating behaviour in the two-spotted spider mite: dependence on age and density. Anim. Behav., 92: 125131. doi: 10.1016/j.anbehav.2014.03.032

Sato, Y. et al. (2014b) Testing for reproductive interference in the population dynamics of two congeneric species of herbivorous mites. Heredity, 113: 495502. doi: 10.1038/hdy.2014.53

Sato, Y. et al. (2015) Incomplete premating and postmating reproductive barriers between two parapatric populations of a social spider mite. Exp. Appl. Acarol., 65: 277291. doi: 10.1007/s10493-015-9878-3

Sato, Y. et al. (2016a) The role of web sharing, species recognition and host-plant defence in interspecific competition between two herbivorous mite species. Exp. Appl. Acarol., 70: 261274. doi: 10.1007/s10493-016-0079-5

Sato, Y. et al. (2016b) Why do males choose heterospecific females in the red spider mite? Exp. Appl. Acarol., 68: 2131. doi: 10.1007/s10493-015-9985-1

Sato, Y. et al. (2018) Patterns of reproductive isolation in a haplodiploid-strong postmating, prezygotic barriers among three forms of a social spider mite. J. Evol. Biol., 31: 866881. doi: 10.1111/jeb.13270

Sato, Y. et al. (2021) Patterns of reproductive isolation in a haplodiploid mite, Amphitetranychus viennensis: prezygotic isolation, hybrid inviability and hybrid sterility. BMC Ecol. Evol., 21: 177. doi: 10.1186/s12862-021-01896-5

Satoh, Y. et al. (2001) Mating strategy of spider mite, Tetranychus urticae (Acari: Tetranychidae) males: postcopulatory guarding to assure paternity. Appl. Entomol. Zool., 36: 4145. doi: 10.1303/aez.2001.41

Schausberger, P. et al. (2021) Cooperative behaviors in group-living spider mites. Front. Ecol. Evol., 9: 745036. doi: 10.3389/fevo.2021.745036

Schausberger, P. et al. (2023) Spider mite males undress females to secure the first mating. iScience, 26: 107112. doi: 10.1016/j.isci.2023.107112

Shinmen, T. et al. (2010) The predatory mite Neoseiulus womersleyi (Acari: Phytoseiidae) follows extracts of trails left by the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae). Exp. Appl. Acarol., 52: 111118. doi: 10.1007/s10493-010-9356-x

Shirotsuka, K. and Yano, S. (2012) Coincidental intraguild predation by caterpillars on spider mites. Exp. Appl. Acarol., 56: 355364. doi: 10.1007/s10493-012-9514-4

Takafuji, A. (1986) Effectiveness of second mating for two incompatible types of the citrus red mite, Panonychus citri (McGregor). Res. Popul. Ecol., 28: 91101. doi: 10.1007/BF02515539

Takafuji, A. and Fujimoto, H. (1985) Reproductive compatibility between populations of the citrus red mite, Panonychus citri (McGregor) (Acarina: Tetranychidae). Res. Popul. Ecol., 27: 361372. doi: 10.1007/BF02515473

Takafuji, A. and Morimoto, N. (1983) Diapause attributes and seasonal occurrences of two populations of the citrus red mite, Panonychus citri (McGregor) on pear (Acarina: Tetranychidae). Appl. Entomol. Zool., 18: 525532. doi: 10.1303/aez.18.525

Takafuji, A. et al. (1997) Reproductive interference and its consequences for the competitive interactions between two closely related Panonychus spider mites. Exp. Appl. Acarol., 21: 379391. doi: 10.1023/A:1018423711166

Tien, N. S. H. et al. (2011) Mate choice promotes inbreeding avoidance in the two-spotted spider mite. Exp. Appl. Acarol., 54: 119124. doi: 10.1007/s10493-011-9431-y

Tien, N. S. H. et al. (2015) Inbreeding depression and purging in a haplodiploid: gender-related effects. Heredity, 114: 327332. doi: 10.1038/hdy.2014.106

Trandem et al. (2015) Fatal attraction: Male spider mites prefer females killed by the mite-pathogenic fungus Neozygites floridana. J. Invertebr. Pathol., 128: 613. doi: 10.1016/j.jip.2015.04.002

Tsuchida, Y. et al. (2022) Effects of intraguild predation and cannibalism in two generalist phytoseiid species on prey density of the pink citrus rust mite in the presence of high-quality food. BioControl, 67: 287296. doi: 10.1007/s10526-022-10139-5

Tuan, S. J. et al. (2016) Survival and reproductive strategies in two-spotted spider mites: Demographic analysis of arrhenotokous parthenogenesis of Tetranychus urticae (Acari: Tetranychidae), J. Econ. Entomol., 109: 502509. doi: 10.1093/jee/tov386

Uesugi, R. et al. (2009a) Evidence of a high level of gene flow among apple trees in Tetranychus urticae. Exp. Appl. Acarol., 49: 281290. doi: 10.1007/s10493-009-9267-x

Uesugi, R. et al. (2009b) The fine-scale genetic structure of the two-spotted spider mite in a commercial greenhouse. Exp. Appl. Acarol., 49: 99109. doi: 10.1007/s10493-008-9201-7

Vala, F. et al. (2000) Wolbachia induced hybrid breakdown in the two-spotted spider mite Tetranychus urticae Koch. Proc. R. Soc. B Biol. Sci., 267: 19311937. doi: 10.1098/rspb.2000.1232.

Vala, F. et al. (2004) Wolbachia affects oviposition and mating behaviour of its spider mite host. J. Evol. Biol., 17: 692700. doi: 10.1046/j.1420-9101.2003.00679.x

Yamamura, N. (1987) Biparental defence in a subsocial spider mite. Trends Ecol. Evol., 2: 261262.

Yano, J. et al. (2011) Variation in counterattack effect against a phytoseiid predator between two forms of the social spider mite, Stigmaeopsis miscanthi. J. Ethol., 29: 337342. doi: 10.1007/s10164-010-0265-6

Yano, S. (2008) Collective and solitary behaviors of twospotted spider mite (Acari: Tetranychidae) are induced by trail following. Ann. Entomol. Soc. Am., 101: 247252. doi: 10.1603/0013-8746(2008)101[247:CASBOT]2.0.CO;2

Yano, S. (2012) Cooperative web sharing against predators promotes group living in spider mites. Behav. Ecol. Sociobiol., 66: 845853. doi: 10.1007/s00265-012-1332-5

Yano, S. et al. (2022) Avoidance of ant chemical traces by spider mites and its interpretation. Exp. Appl. Acarol., 88: 153163. doi: 10.1007/s10493-022-00752-5

Yokoi, A. et al. (2023) Sperm-depleted males of the two-spotted spider mite can replenish sperm in a few hours. Exp. Appl. Acarol., 91: 251262. doi: 10.1007/s10493-023-00842-y

 

第7章 遺伝

Adams, M. D. et al. (2000) The genome sequence of Drosophila melanogasterScience287: 21852195. doi: 10.1126/science.287.5461.2185

Altincicek, B. et al. (2012) Horizontally transferred fungal carotenoid genes in the two-spotted spider mite Tetranychus urticae. Biol. Lett.8: 253257. doi: 10.1098/rsbl.2011.0704

Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116: 281297. doi: 10.1016/s0092-8674(04)00045-5

Bensoussan, N. et al. (2020) Environmental RNA interference in two-spotted spider mite, Tetranychus urticae, reveals dsRNA processing requirements for efficient RNAi response. Sci. Rep., 10: 116. doi: 10.1038/s41598-020-75682-6

Bensoussan, N. et al. (2022) Localized efficacy of environmental RNAi in Tetranychus urticae. Sci. Rep., 12: 14791. doi: 10.1038/s41598-022-19231-3

Bolland, H. R. and Gotoh, T. (1992) Chromosome numbers in the genus Panonychus in Japan (Acari: Tetranychidae). Appl. Entomol. Zool., 27: 602604. doi: 10.1303/aez.27.602

Bryon, A. et al. (2013) Genome wide gene-expression analysis of facultative reproductive diapause in the two-spotted spider mite Tetranychus urticaeBMC Genom.14: 120. doi: 10.1186/1471-2164-14-815

Bryon, A. et al. (2017) Disruption of a horizontally transferred phytoene desaturase abolishes carotenoid accumulation and diapause in Tetranychus urticae. PNAS, 114: E5871E5880. doi: 10.1073/pnas.1706865114

Carmona-Antoñanzas, G. et al. (2015) A survey of the ATP-binding cassette (ABC) gene superfamily in the salmon louse (Lepeophtheirus salmonis). PLOS ONE, 10: e0137394. doi: 10.1371/journal.pone.0137394

Carthew, R. W. and Sontheimer, E. J. (2009) Origins and mechanisms of miRNAs and siRNAs. Cell, 136: 642655. doi: 10.1016/j.cell.2009.01.035

Chera, S. et al. (2006) Silencing of the hydra serine protease inhibitor Kazal1 gene mimics the human SPINK1 pancreatic phenotype. J. Cell Sci., 119: 846857. doi: 10.1242/jcs.02807

Christian, M. et al. (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186: 757761. doi: 10.1534/genetics.110.120717

Czech, B. et al. (2008) An endogenous small interfering RNA pathway in Drosophila, Nature, 453: 798802. doi: 10.1038/nature07007

Daneshian, L. et al. (2022) Structural and functional characterization of β-cyanoalanine synthase from Tetranychus urticae. Insect Biochem. Mol. Biol., 142: 103722. doi: 10.1016/j.ibmb.2022.103722

De Rouck, S. et al. (2024) SYNCAS: Efficient CRISPR/Cas9 gene-editing in difficult to transform arthropods. Insect Biochem. Mol. Biol., 165: 104068. doi: 10.1016/j.ibmb.2023.104068

Dermauw, W. et al. (2013a) A burst of ABC genes in the genome of the polyphagous spider mite Tetranychus urticaeBMC Genom.14: 122. doi: 10.1186/1471-2164-14-317

Dermauw, W. et al. (2013b) A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. PNAS, 110: E113E122. doi: 10.1073/pnas.1213214110

Dermauw, W. et al. (2020) Targeted mutagenesis using CRISPR-Cas9 in the chelicerate herbivore Tetranychus urticae. Insect Biochem. Mol. Biol, 120: 103347. doi: 10.1016/j.ibmb.2020.103347

Dittrich, V. (1961) Populationsgenetische Untersuchungen an normalen und phosphorsäureester-resistenten Stämmen von Tetranychus urticae Koch. Z. Angew. Entomol., 48: 3457. doi: 10.1111/j.1439-0418.1961.tb03790.x

Dubey, V. K. et al. (2017) Agroinfiltration-based expression of hairpin RNA in soybean plants for RNA interference against Tetranychus urticae. Pestic. Biochem. Phys., 142: 5358. doi: 10.1016/j.pestbp.2017.01.004

Elliott, T. A. and Gregory, T. R. (2015a) Do larger genomes contain more diverse transposable elements?. BMC Ecol. Evol.15: 110. doi: 10.1186/s12862-015-0339-8

Elliott, T. A. and Gregory, T. R. (2015b) What’s in a genome? The C-value enigma and the evolution of eukaryotic genome content. Philos. Trans. R. Soc. B Biol. Sci.370: 20140331. doi: 10.1098/rstb.2014.0331

English, A. C. et al. (2012) Mind the gap: Upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLOS ONE, 7: e47768. doi: 10.1371/journal.pone.0047768

Evans, G. O. (1992) Reproductive systems. In: Principles of Acarology. pp. 263298, CAB International.

Fire, A. et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391: 806811. doi: 10.1038/35888

Fleischmann, R. D. et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. science269: 496512. doi: 10.1126/science.7542800

Fukuda, Y. and Schuetz, J. D. (2012) ABC transporters and their role in nucleoside and nucleotide drug resistance. Biochem. Pharmacol.83: 10731083. doi: 10.1016/j.bcp.2011.12.042

Ghazy, N. A. et al. (2020) A leaf-mimicking method for oral delivery of bioactive substances into sucking arthropod herbivores. Front. Plant Sci., 11: 111. doi: 10.3389/fpls.2020.01218

Ghildiyal, M. and Zamore, P. D. (2009) Small silencing RNAs: An expanding universe. Nat. Rev. Genet., 10: 94108. doi: 10.1038/nrg2504

Grbić, M. et al. (2007) Mity model: Tetranychus urticae, a candidate for chelicerate model organism. BioEssays, 29: 489496. doi: 10.1002/bies.20564

Grbić, M. et al. (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 479: 487492. doi: 10.1038/nature10640

Greenhalgh, R. et al. (2020) Genome streamlining in a minute herbivore that manipulates its host plant. Elife9: e56689. doi: 10.7554/eLife.56689

Gregory, T. R. and Young, M. R. (2020) Small genomes in most mites (but not ticks). Int. J. Acarol.46: 18. doi: 10.1080/01647954.2019.1684561

Gutierrez, J. and Bolland, H. R. (1986) Description and karyotype of Schizonobia oudemansi sp. n. from The Netherlands (Acari: Tetranychidae). Entomolog. Ber., 46: 3943.

Gutierrez, J. et al. (1991) Deuterotoky in Mononychellus caribbeanae (Acari: Tetranychidae) on cassava in Guadeloupe. Modern Acarology Vol. 2 (Dusbábek, F. and Bukava, V. eds.), pp. 443447, SPB Academic.

Helle, W. (1962) Genetics of resistance to organophosphorus compounds and its relation to diapause in Tetranychus urticae Koch (Acari). Eur. J. Plant Pathol., 68: 155195. doi: 10.1007/BF01980946

Helle, W. (1985) Genetics. In: Spider Mites. Their Biology, Natural Enemies and Control. Volume 1A (Helle, W. and Sabelis, M. W. eds.). pp. 185192, Elsevier.

Helle, W. and Bolland, H. R. (1967) Karyotypes and sex-determination in spider mites (Tetranychidae). Genetica, 38: 4353. doi: 10.1007/BF01507446

Helle, W. and Pijnacker, L. P. (1985) Parthenogenesis, chromosomes and sex. In: Spider Mites. Their Biology, Natural Enemies and Control. Volume 1A (Helle, W. and Sabelis, M. W. eds.). pp. 129139, Elsevier.

Helle, W. and Takahashi, K. (1985) Chromosome numbers of spider mites from bamboo. Acarologia, 26: 367370.

Helle, W. et al. (1983) DNA-contents in spider mites (Tetranychidae) in relation to karyotype evolution. Int. J. Acarol., 9: 127129. doi: 10.1080/01647958308683325

Hirakata, S. and Siomi, M. C. (2016) piRNA biogenesis in the germline: from transcription of piRNA genomic sources to piRNA maturation. Biochim. Biophys. Acta - Gene Regul. Mech., 1859: 8292. doi: 10.1016/j.bbagrm.2015.09.002

Hu, J. H. et al. (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 556: 5763. doi: 10.1038/nature26155

Huvenne, H. and Smagghe, G. (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: A review. J. Insect Physiol., 56: 227235. doi: 10.1016/j.jinsphys.2009.10.004

Imae, R. et al. (2016) Endomembrane-associated RSD-3 is important for RNAi induced by extracellular silencing RNA in both somatic and germ cells of Caenorhabditis elegans. Sci. Rep., 6: 28198. doi: 10.1038/srep28198

İnak, E. et al. (2024) A novel target-site mutation (H146Q) outside the ubiquinone binding site of succinate dehydrogenase confers high levels of resistance to cyflumetofen and pyflubumide in Tetranychus urticae. Insect Biochem. Mol. Biol., 170: 104127. doi: 10.1016/j.ibmb.2024.104127

泉奈津子・泊 幸秀 (2018) piRNA の生成機構および作用機序. 領域融合レビュー, 7: e003. doi: 10.7875/leading.author.7.e003

Ji, M. et al. (2023) A nuclear receptor HR96-related gene underlies large trans-driven differences in detoxification gene expression in a generalist herbivore. Nat. Commun., 14: 4990. doi: 10.1038/s41467-023-40778-w

Jinek, M. et al. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337: 816821. doi: 10.1126/science.1225829

Kawaguchi, S. et al. (2016) Imaginal feeding for progression of diapause phenotype in the two-spotted spider mite (Acari: Tetranychidae). Environ. Entomol., 45: 15681573. doi: 10.1093/ee/nvw127

Khila, A. and Grbić, M. (2007) Gene silencing in the spider mite Tetranychus urticae: dsRNA and siRNA parental silencing of the Distal-less gene. Dev. Genes Evol., 217: 241251. doi: 10.1007/s00427-007-0132-9

Kihara, H. (1954) Considerations on the evolution and distribution of Aegilops species based on the analyser-method. Cytologia, 19: 336357. doi: 10.1508/cytologia.19.336

Kim, Y. G. et al. (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. PNAS, 93: 11561160. doi: 10.1073/pnas.93.3.1156

Klug, A. (2010). The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Q. Rev. Biophys., 43: 121. doi: 10.1017/S0033583510000089

Kornberg, A. et al. (1956) Enzymic synthesis of deoxyribonucleic acid. Biochimica et Biophysica Acta21: 197198. doi: 10.1016/0006-3002(56)90127-5

Kutter, C. and Svoboda, P. (2008) miRNA, siRNA, piRNA: Knowns of the unknown. RNA Biol., 5: 181188. doi: 10.4161/rna.7227

Kwon, D. H. et al. (2013) Screening of lethal genes for feeding RNAi by leaf disc-mediated systematic delivery of dsRNA in Tetranychus urticae. Pestic. Biochem. Phys., 105: 6975. doi: 10.1016/j.pestbp.2012.12.001

Li, X. et al. (2022) Identification of the fibroin of Stigmaeopsis nanjingensis by a nanocarrier-based transdermal dsRNA delivery system. Exp. Appl. Acarol., 87: 3147. doi: 10.1007/s10493-022-00718-7

Lorite, P. and Palomeque, T. (2010) Karyotype evolution in ants (Hymenoptera: Formicidae), with a review of the known ant chromosome numbers. Myrmecol. News, 13: 89102. doi: 10.25849/myrmecol.news_013:089

Luo, X. et al. (2023) Role of the Hox Genes, Sex combs reduced, Fushi tarazu and Antennapedia, in Leg Development of the Spider Mite Tetranychus urticae. Int. J. Mol. Sci., 24: 10391. doi: 10.3390/ijms241210391

Ma, Z. et al. (2022) Visualization of the process of a nanocarrier-mediated gene delivery: Stabilization, endocytosis and endosomal escape of genes for intracellular spreading. J. Nanobiotechnology, 20: 112. doi: 10.1186/s12951-022-01336-6

Maxam, A. M. and Gilbert, W. (1977) A new method for sequencing DNA. PNAS, 74: 560564. doi: 10.1073/pnas.74.2.560

Mendelsohn, M. L. et al. (2020) Summary of discussions from the 2019 OECD conference on RNAi based pesticides. Front. Plant Sci., 11: 16. doi: 10.3389/fpls.2020.00740

Morgan, T. H. (1910) Sex limited inheritance in Drosophila. Science, 32: 120122.

Nganso, B. T. et al. (2020) A genome-wide screening for RNAi pathway proteins in Acari. BMC Genom., 21: 791. doi: 10.1186/s12864-020-07162-0

Niu, J. et al. (2018) Beyond insects: current status and achievements of RNA interference in mite pests and future perspectives. Pest Manag. Sci., 74: 26802687. doi: 10.1002/ps.5071

Njiru, C. et al. (2022) Intradiol ring cleavage dioxygenases from herbivorous spider mites as a new detoxification enzyme family in animals. BMC biology20: 131. doi: 10.1186/s12915-022-01323-1

Ochman, H. et al. (2000) Lateral gene transfer and the nature of bacterial innovation. Nature, 405: 299304. doi: 10.1038/35012500

Orii, H. et al. (2003) A simple "soaking method" for RNA interference in the planarian Dugesia japonica. Dev. Genes Evol., 213: 138141. doi: 10.1007/s00427-003-0310-3

刑部正博 (1991) ハダニ類の変異機構 分子レベルからのアプローチ. 化学と生物, 29: 304311. doi: 10.1271/kagakutoseibutsu1962.29.304

Patel, A. et al. (2007) The making of a queen: TOR pathway is a key player in diphenic caste development. PLOS ONE, 2: e509. doi: 10.1371/journal.pone.0000509

Pijnacker, L. P. and Ferwerda, M. A. (1976) Differential Giemsa staining of the holokinetic chromosomes of the two-spotted spider mite, Tetranychus urticae Koch (Acari, Tetranychidae). Experientia, 32: 158160. doi: 10.1007/BF01937740

Saleh, M. C. et al. (2006) The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat. Cell Biol., 8: 793802. doi: 10.1038/ncb1439

Sanger, F. et al. (1977) DNA sequencing with chain-terminating inhibitors. PNAS, 74: 54635467. doi: 10.1073/pnas.74.12.5463

佐々木浩・泊 幸秀 (2012) Argonaute: RNA サイレンシングの構造基盤. 領域融合レビュー, 1: e001. doi: 10.7875/leading.author.1.e001

Schlachter, C. R. et al. (2019) Structural and functional characterization of an intradiol ring-cleavage dioxygenase from the polyphagous spider mite herbivore Tetranychus urticae Koch. Insect Biochem. Mol. Biol., 107: 1930. doi: 10.1016/j.ibmb.2018.12.001

Shabalina, S.A. and Koonin, E.V. (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol., 23: 57887. doi: 10.1111/j.1365-2583.2005.00575.x

Sharma, R. P. (1973) Wingless a new mutant in Drosophila melanogaster. Drosophila information service, 50: 134.

Shibaya, S. and Suzuki, T. (2018) A parental RNAi-based reverse genetics system for analyzing embryonic development of Tetranychus urticae. XV Intl. Conference Acarol., p.26

Smith Meyer, M. K. P. (1974) A Revision of the Tetranychidae of Africa (Acari): With a Key to the Genera of the World. Entomol. Mem. No. 36. Department of Agricultural Technical Services.

Soares, C. A. G. et al. (2005) Capillary feeding of specific dsRNA induces silencing of the isac gene in nymphal Ixodes scapularis ticks. Insect Mol. Biol., 14: 443452. doi: 10.1111/j.1365-2583.2005.00575.x

Sugimoto, N. et al. (2020) QTL mapping using microsatellite linkage reveals target-site mutations associated with high levels of resistance against three mitochondrial complex II inhibitors in Tetranychus urticae. Insect Biochem. Mol. Biol., 123: 103410. doi: 10.1016/j.ibmb.2020.103410

Sun, D. et al. (2017) Progress and prospects of CRISPR/Cas systems in insects and other arthropods. Front. Physiol., 8: 122. doi: 10.3389/fphys.2017.00608

Sun, Q.-Z. et al. (2023) Horizontally transferred genes as natural and specific RNAi targets in a pest spider mite (Panonychus citri). Entomol. Gen., 43: 99107. doi: 10.1127/entomologia/2022/1788

鈴木丈詞 (2023) RNA農薬の開発動向. 「化学農薬・生物農薬およびバイオスティミュラントの創製研究動向」 (梅津憲治監修). pp. 450458, 出版社.

Suzuki, T. et al. (2017a) Protocols for the delivery of small molecules to the two-spotted spider mite, Tetranychus urticae. PLOS ONE, 12: e0180658. doi: 10.1371/journal.pone.0180658

Suzuki, T. et al. (2017b) RNAi-based reverse genetics in the chelicerate model Tetranychus urticae: A comparative analysis of five methods for gene silencing. PLOS ONE, 12: e0180654. doi: 10.1371/journal.pone.0180654

Tabara, H. et al. (1998) RNAi in C. elegans: Soaking in the genome sequence. Science, 282: 430431. doi: 10.1126/science.282.5388.430

Taylor, E. A., and Smith, F. F. (1956) Transmission of resistance between strains of two-spotted spider mites. J. Econ. Entomol., 49: 858859. doi: 10.1093/jee/49.6.858

Ullmann, A. J. et al. (2005) Genome size and organization in the blacklegged tick, Ixodes scapularis and the Southern cattle tick, Boophilus microplusInsect Mol. Biol.14: 217222. doi: 10.1111/j.1365-2583.2005.00551.x

Ulvila, J. et al. (2006) Double-stranded RNA is internalized by scavenger receptor-mediated endocytosis in Drosophila S2 cells. J. Biol. Chem., 281: 1437014375. doi: 10.1074/jbc.M513868200

Van Leeuwen, T. et al. (2012) Population bulk segregant mapping uncovers resistance mutations and the mode of action of a chitin synthesis inhibitor in arthropods. PNAS, 109: 44074412. doi: 10.1073/pnas.1200068109

Veerman, A. (1970) The pigments of Tetranychus cinnabarinus boisd. (Acari: Tetranychidae). Comp. Biochem. Physiol., 36: 749763. doi: 10.1016/0010-406X(70)90530-X

Veerman, A. (1974) Carotenoid metabolism in Tetranychus urticae koch (Acari: Tetranychidae). Comp. Biochem. Physiol., 47: 101116. doi: 10.1016/0305-0491(74)90095-9

Watson, J. D. and Crick, F. H. C. (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature, 171: 737738. doi: 10.1038/171737a0

Wei, P. et al. (2021) Comparing the efficiency of RNAi after feeding and injection of dsRNA in spider mites. Pestic. Biochem. Phys., 179: 104966. doi: 10.1016/j.pestbp.2021.104966

Whangbo, J. S. and Hunter, C. P. (2008) Environmental RNA interference. Trends Genet., 24: 297305. doi: 10.1016/j.tig.2008.03.007

Winkler, H. (1920) Verbreitung und Ursache der Parthenogenesis im Pflanzen- und Tierreiche. G. Fischer. doi: 10.5962/bhl.title.1460

Winston, W. M. et al. (2007) Caenorhabditis elegans SID-2 is required for environmental RNA interference. PNAS, 104: 1056510570. doi: 10.1073/pnas.0611282104

Wu, M. et al. (2023) Transplastomic tomatoes expressing double-stranded RNA against a conserved gene are efficiently protected from multiple spider mites, New Phytol., 237: 13631373. doi: 10.1111/nph.18595

Wybouw, N. et al. (2012) A horizontally transferred cyanase gene in the spider mite Tetranychus urticae is involved in cyanate metabolism and is differentially expressed upon host plant change. Insect Biochem. Mol. Biol.42: 881889. doi: 10.1016/j.ibmb.2012.08.002

Wybouw, N. et al. (2014) A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning. Elife3: e02365. doi: 10.7554/eLife.02365

Wybouw, N. et al. (2018) A massive incorporation of microbial genes into the genome of Tetranychus urticae, a polyphagous arthropod herbivore. Insect Mol. Biol.27: 333351. doi: 10.1111/imb.12374

Wybouw, N. et al. (2019) Long-term population studies uncover the genome structure and genetic basis of xenobiotic and host plant adaptation in the herbivore Tetranychus urticae. Genetics, 211: 14091427. doi: 10.1534/genetics.118.301803

 

第8章 農業被害と防除

Bajda, S. et al. (2017) A mutation in the PSST homologue of complex I (NADH: ubiquinone oxidoreductase) from Tetranychus urticae is associated with resistance to METI acaricides. Insect Biochem. Mol. Biol., 80: 7990. doi: 10.1016/j.ibmb.2016.11.010

Croft, B. A. et al. (1998) Comparative life histories and predation types: are Neoseiulus californicus and N. fallacis (Acari: Phytoseiidae) similar type II selective predators of spider mites? Environ. Entomol., 27: 531538. doi: 10.1093/ee/27.3.531

De Beer, B. et al. (2022) High-resolution genetic mapping combined with transcriptome profiling reveals that both target-site resistance and increased detoxification confer resistance to the pyrethroid bifenthrin in the spider mite Tetranychus urticae. Biology, 11: 1630. doi: 10.3390/biology11111630

De Rouck, S. et al. (2023) A review of the molecular mechanisms of acaricide resistance in mites and ticks. Insect Biochem. Mol. Biol., 159: 103981. doi: 10.1016/j.ibmb.2023.103981

Demaeght, P. et al. (2014) High resolution genetic mapping uncovers chitin synthase-1 as the target-site of the structurally diverse mite growth inhibitors clofentezine, hexythiazox and etoxazole in Tetranychus urticae. Insect Biochem. Mol. Biol., 51: 5261. doi: 10.1016/j.ibmb.2014.05.004

江原昭三・後藤哲雄編 (2009) 「原色植物ダニ検索図鑑」. 全国農村教育協会.

Feng, K. et al. (2020) lincRNA_Tc13743.2-miR-133-5p-TcGSTm02 regulation pathway mediates cyflumetofen resistance in Tetranychus cinnabarinus. Insect Biochem. Mol. Biol., 123: 103413. doi: 10.1016/j.ibmb.2020.103413

Feng, K. et al. (2022) Circular RNA, circ1-3p, is involved in cyflumetofen resistance by acting as a competitive RNA against miR-1-3p in Tetranychus cinnabarinus. J. Agric. Food Chem., 70: 10681078. doi: 10.1021/acs.jafc.1c07155

Friese, D. D. and Gilstrap, F. E. (1982) Influence of prey availability on reproduction and prey consumption of Phytoseiulus persimilis, Amblyseius californicus and Metaseiulus occidentalis (Acarina: Phytoseiidae). Int. J. Acarol., 8: 8589. doi: 10.1080/01647958208683283

舟山 健 (2018) 北日本のリンゴ園におけるカブリダニ類 (ダニ目: カブリダニ科) を利活用したナミハダニ (ダニ目: ハダニ科) 防除の試み. 日本応用動物昆虫学会誌, 62: 95105. doi: 10.1303/jjaez.2018.95

Grbić, M. et al. (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 479: 487492. doi: 10.1038/nature10640

浜村徹三 (1997) 施設栽培イチゴにおけるチリカブリダニの利用法. 植物防疫, 52: 321325.

井村岳男・米田祥二 (2017) 奈良県の促成イチゴ栽培におけるカブリダニ製剤を利用したナミハダニ黄緑型の防除体系の検討. 奈良農研セ研報, 48: 16.

İnak, E. et al. (2022) Long-term survey and characterization of cyflumetofen resistance in Tetranychus urticae populations from Turkey. Pestic. Biochem. Phys., 188: 105235. doi: 10.1016/j.pestbp.2022.105235

Itoh, Y. et al. (2022) Combination of target site mutation and associated CYPs confers high-level resistance to pyridaben in Tetranychus urticae. Pestic. Biochem. Phys., 181: 105000. doi: 10.1016/j.pestbp.2021.105000

兼田武典ほか (2012) トンネル栽培ニンジンに発生したホモノハダニの薬剤感受性. 日本ダニ学会誌, 21: 2129. doi: 10.2300/acari.21.21

Kanto, T. et al. (2009) UV-B radiation for control of strawberry powdery mildew. Acta Hortic. 842: 359362. doi: 10.17660 /ActaH ortic.2009.842.68

神頭武嗣ほか (2011) 紫外光 (UV-B) 照射によるイチゴうどんこ病の防除. 植物防疫, 65:  2832.

片山晴喜ほか (2016) 施設バラのハダニ類に対する天敵カブリダニ類の防除効果. 静岡農林研研報, 9: 3539.

川島和夫 (2020) 植物保護における界面活性剤の基礎作用と応用場面. 植物の生長調節, 55: 116125. doi: 10.18978/jscrp.55.2_116

Kishimoto, H. (2002) Species composition and seasonal occurrence of spider mites (Acari: Tetranychidae) and their predators in Japanese pear orchards with different agrochemical spraying programs. Appl. Entomol. Zool., 37: 603615. doi: 10.1303/aez.2002.603

岸本英成ほか (2018) 土着広食性カブリダニ4 (ダニ目: カブリダニ科) に対する各種殺虫剤の影響. 日本応用動物昆虫学会誌, 62: 2939. doi: 10.1303/jjaez.2018.29

岸本英成ほか (2020) 草刈りの高さがリンゴ園下草でのカブリダニ類の発生に及ぼす影響. 日本ダニ学会誌, 29: 4758. doi: 10.2300/acari.29.47

小坪 遊ほか (2004) 近畿地方で発見されたミツユビナミハダニの発育・増殖特性. 日本ダニ学会誌, 13: 7176. doi: 10.2300/acari.13.71

國本佳範 (2019) 野菜類に発生するハダニ類の発生生態と防除. 植物防疫, 73: 721725.

国本佳範ほか (2013) 奈良県のキク圃場周辺のハダニ類の土着天敵相と薬剤散布状況が異なるキク圃場でのカブリダニ類の発生消長. 日本ダニ学会誌, 22: 101115. doi: 10.2300/acari.22.101

草間直人・山中 聡 (2020) 全国におけるIPM体系の確立と普及に向けた普及指導機関からのアプローチ. 日本応用動物昆虫学会誌, 64: 93106. doi: 10.1303/jjaez.2020.93

Li, J. et al. (2023) Molecular basis for the selectivity of the succinate dehydrogenase inhibitor cyflumetofen between pest and predatory mites. J. Agric. Food Chem., 71: 36583669. doi: 10.1021/acs.jafc.2c06149

Lin, G. et al. (2017) A new method for loading predatory mites with entomopathogenic fungi for biological control of their prey. Biol. Control, 115: 105111. doi: 10.1016/j.biocontrol.2017.09.012

Lin, G. et al. (2019) Phytoseiid predatory mites can disperse entomopathogenic fungi to prey patches. Sci. Rep., 9: 19435. doi: 10.1038/s41598-019-55499-8

Lu, X. et al. (2023) Increased metabolism in combination with the novel cytochrome b target-site mutation L258F confers cross-resistance between the Q0 inhibitors acequinocyl and bifenazate in Tetranychus urticae. Pestic. Biochem. Phys., 192: 105411. doi: 10.1016/j.pestbp.2023.105411

Maeoka, A. and Osakabe, M. (2021) Co-occurrence of subunit B and C mutations in respiratory complex II confers high resistance levels to pyflubumide and cyenopyrafen in the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae). Pest Manag. Sci., 77: 51495157. doi: 10.1002/ps.6555

増井伸一ほか (2018) 露地栽培カンキツのIPM における天敵利用の現状と課題. 日本応用動物昆虫学会誌, 62: 137148. doi: 10.1303/jjaez.2018.137

McMurtry, J. A. and Croft, B. A. (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu. Rev. Entomol., 42: 291321. doi: 10.1146/annurev.ento.42.1.291

Murata, Y. et al. (2014) Factors affecting photoreactivation in UVB-irradiated herbivorous spider mite (Tetranychus urticae). Exp. Appl. Acarol., 63: 253265. doi: 10.1007/s10493-014-9773-3

中井善太ほか (2022) ナシ園における株元雑草の温存がハダニ類 (ダニ目: ハダニ科) とカブリダニ類 (ダニ目: カブリダニ科) などの天敵の発生に及ぼす影響. 日本応用動物昆虫学会誌, 66: 5363. doi: 10.1303/jjaez.2022.53

日本植物防疫協会 (2022) 「農薬要覧2022. 日本植物防疫協会.

西ヶ谷有輝ほか (2023) 構造ベース創薬の農薬への適用. 農薬誌, 48: 159164.

Njiru, C. et al. (2022) A H258Y mutation in subunit B of the succinate dehydrogenase complex of the spider mite Tetranychus urticae confers resistance to cyenopyrafen and pyflubumide, but likely reinforces cyflumetofen binding and toxicity. Insect Biochem. Mol. Biol., 144: 103761. doi: 10.1016/j.ibmb.2022.103761

農研機構 (2019) 薬剤抵抗性の考え方. 「薬剤抵抗性農業害虫管理のためのガイドライン案」. pp. 715.

農研機構 (2021a) 天敵を主体とした果樹のハダニ類防除体系標準作業手順書 基礎・資料編. https://sop.naro.go.jp/document/detail/45 (2024-8-1閲覧)

農研機構 (2021b) 天敵を主体とした果樹のハダニ類防除体系標準作業手順書 ナシ編. https://sop.naro.go.jp/document/detail/43 (2024-8-1閲覧)

農研機構 (2021c) 天敵を主体とした果樹のハダニ類防除体系標準作業手順書 リンゴ編. https://sop.naro.go.jp/document/detail/44 (2024-8-1閲覧)

農研機構 (2022) 天敵を主体とした果樹のハダニ類防除体系標準作業手順書 施設編 ブドウ/ミカン. https://sop.naro.go.jp/document/detail/75 (2024-8-1閲覧)

Ohtsuka, K. and Osakabe, M. (2009) Deleterious effects of UV-B radiation on herbivorous spider mites: they can avoid it by remaining on lower leaf surfaces. Environ. Entomol., 38: 920929. doi: 10.1603/022.038.0346

刑部正博 (2019) ナミハダニのエトキサゾール抵抗性と診断法. 植物防疫, 73: 357362.

Osakabe, M. (2021) Biological impact of ultraviolet‑B radiation on spider mites and its application in integrated pest management. Appl. Entomol. Zool., 56: 139155. doi: 10.1007/s13355-020-00719-1

Osakabe, M. et al. (2006) Amensalism via webs causes unidirectional shifts of dominance in spider mite communities. Oecologia., 150: 496505. doi: 10.1007/s00442-006-0560-7

Osakabe, M. et al. (2017) Combination of restriction endonuclease digestion with the ΔΔCt method in real-time PCR to monitor etoxazole resistance allele frequency in the two-spotted spider mite. Pestic. Biochem. Phys., 139: 18. doi: 10.1016/j.pestbp.2017.04.003

小山田浩一・村井 保 (2013) 高濃度二酸化炭素くん蒸処理のナミハダニTetranychus urticae Kochに対する防除効果とイチゴ苗に及ぼす影響. 日本応用動物昆虫学会誌, 57: 249256. doi: 10.1303/jjaez.2013.249

小山田浩一・村井 保 (2014) 高濃度二酸化炭素くん蒸処理によるナミハダニ防除のイチゴ栽培における実用化について. 植物防疫, 68: 407413.

Riga, M. et al. (2017) The relative contribution of target-site mutations in complex acaricide resistant phenotypes as assessed by marker assisted backcrossing in Tetranychus urticae. Sci. Rep., 7: 9202. doi: 10.1038/s41598-017-09054-y

関根崇行 (2016) 気門封鎖型薬剤のイチゴのハダニ類に対する防除効果と殺菌剤の防除効果に与える影響. 北日本病虫研報, 67: 178181. doi: 10.11455/kitanihon.2016.67_178

関根崇行 (2019) 促成イチゴ栽培の天敵利用とIPM—宮城県の現状と展望を中心に. 日本応用動物昆虫学会誌, 63: 7395. doi: 10.1303/jjaez.2019.79

関根崇行ほか (2019) 促成イチゴにおけるハダニ捕食性タマバエおよびハダニアザミウマの発生推移とハダニ類抑制効果. 北日本病虫研報, 70: 168174. doi: 10.11455/kitanihon.2019.70_168

柴尾 学・井奥由子 (2016)ミヤコカブリダニとチリカブリダニのリレー利用による施設イチゴのナミハダニ黄緑型の防除. 関西病虫研報, 58: 7376. doi: 10.4165/kapps.58.73

Shimoda, T. et al. (2017) A novel method for protecting slow-release sachets of predatory mites against environmental stresses and increasing predator release to crops. BioControl, 62: 495503. doi: 10.1007/s10526-017-9800-5

白石正美 (2017) 農林水産省における薬剤抵抗性対策に向けた取組状況. 植物防疫, 71: 269277.

Snoeck, S. et al. (2019) High-resolution QTL mapping in Tetranychus urticae reveals acaricide-specific responses and common target-site resistance after selection by different METI-I acaricides. Insect Biochem. Mol. Biol., 110: 1933. doi: 10.1016/j.ibmb.2019.04.011

Sugimoto, N. et al. (2020) QTL mapping using microsatellite linkage reveals target-site mutations associated with high levels of resistance against three mitochondrial complex II inhibitors in Tetranychus urticae. Insect Biochem. Mol. Biol., 123: 103410. doi: 10.1016/j.ibmb.2020.103410

Suzuki, T. et al. (2009) UV tolerance in the two-spotted spider mite, Tetranychus urticae. J. Insect Physiol., 55: 649654. doi: 10.1016/j.jinsphys.2009.04.005

Suzuki, T. et al. (2014) An LED-based UV-B irradiation system for tiny organisms: System description and demonstration experiment to determine the hatchability of eggs from four Tetranychus spider mite species from Okinawa. J. Insect Physiol., 62: 110. doi: 10.1016/j.jinsphys.2014.01.005

Tadatsu, M. et al. (2022) A mutation in chitin synthase I associated with etoxazole resistance in the citrus red mite Panonychus citri (Acari: Tetranychidae) and its uneven geographical distribution in Japan. Pest Manag. Sci., 78: 40284036. doi: 10.1002/ps.7021

高山智光 (2017)イチゴ苗の蒸熱処理技術について. 植物防疫, 71: 646651.

Tanaka, M. et al. (2016) Physical control of spider mites using ultraviolet-B with light reflection sheets in greenhouse strawberries. J. Econ. Entomol., 109: 17581765. doi: 10.1093/jee/tow096

田中雅也ほか (2017) UVBランプと光反射シートによるハダニ物理的防除 (UV) について—施設イチゴにおける防除事例を中心に. 植物防疫, 71: 229234.

𡈽田 聡ほか (2011) 高温・高濃度炭酸ガスくん蒸の殺虫効果とリンゴ・ナシ果実品質への影響. 果樹研報, 12: 1526.

外山晶敏・岸本英成 (2022) 果樹のハダニ防除における天敵利用に向けた取り組み. 植物防疫, 76: 1518.

上村香菜子ほか (2020) 施設バラにおいてスピノサドの散布がチリカブリダニへ及ぼす影響. 九病虫研会報, 66: 5765. doi: 10.4241/kyubyochu.66.57

Uesugi, R. et al. (2002) Genetic basis of resistances to chlorfenapyr and etoxazole in the two-spotted spider mite (Acari: Tetranychidae). J. Econ. Entomol., 95: 12671274. doi: 10.1603/0022-0493-95.6.1267

梅谷献二ほか (2003) 「日本農業害虫大事典」. 全国農村教育協会.

Van Leeuwen, T. and Dermauw, W. (2016) The molecular evolution of xenobiotic metabolism and resistance in chelicerate mites. Annu. Rev. Entomol., 61: 475498. doi: 10.1146/annurev-ento-010715-023907

Van Leeuwen, T. et al. (2008) Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-Mendelian inheritance in action. PNAS, 105: 59805985. doi: 10.1073/pnas.0802224105

Van Leeuwen, T. et al. (2010) Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochem. Mol. Biol., 40: 563572. doi: 10.1016/j.ibmb.2010.05.008

Van Leeuwen, T. et al. (2012) Population bulk segregant mapping uncovers resistance mutations and the mode of action of a chitin synthesis inhibitor in arthropods. PNAS, 109: 44074412. doi: 10.1073/pnas.1200068109

山口晃一・森光太郎 (2019) ミヤコカブリダニのハダニ防除性能の評価—施設栽培キク上での検証. 関西病虫研報, 61: 8589. doi: 10.4165/kapps.61.85

山本敦司 (2020) ハダニ類防除技術の最近の動向と薬剤抵抗性管理. 農薬新時代, 1: 512.

柳田裕紹 (2019) 促成栽培イチゴのナミハダニ (ダニ目: ハダニ科) に対するIPM の現状と将来展望—福岡県における事例を踏まえて. 日本応用動物昆虫学会誌, 63: 112. doi: 10.1303/jjaez.2019.1

柳田裕紹ほか (2017) 促成栽培イチゴの育苗期に発生するナミハダニに対する土着天敵ハダニアザミウマの保護利用の有効性. 九病虫研会報, 63: 3745. doi: 10.4241/kyubyochu.63.37

横山 薫ほか (2021) 群馬県におけるナスのミツユビナミハダニに対する各種薬剤の殺虫効果. 関東病虫研報, 68: 5961. doi: 10.11337/ktpps.68.59

Zhang, Y. et al. (2018) A microRNA-1 gene, tci-miR-1-3p, is involved in cyflumetofen resistance by targeting a glutathione S-transferase gene, TCGSTM4, in Tetranychus cinnabarinus. Insect Mol. Biol., 27: 352364. doi: 10.1111/imb.12375

 

第9章 外来種問題

Arbabi, M. et al. (2009) First report of occurrence of Schizotetranychus celarius (Banks) on Salix matsudana Koid. from Iran (Short report). Appl. Entomol. Phytopathol., 76: 137138.

Ares, J. A. (2020) Acariornamental pests in Galicia: Tetranychidae, Tarsonemidae & Eryophyidaespecies identified on woody ornamental crops. Prof. Plant Prot., 9: 17.

Auger, P. and Migeon, A. (2007) Les tétranyques des bambous en France. PHM Rev. Hort., 488: 1719.

Auger, P. et al. (2023) Three new alien spider mites (Prostigmata, Tetranychidae) from south-eastern France. Acarologia, 63: 826833. doi: 10.24349/yeys-kf03

Azandeme-Hounmalon, G. Y. et al. (2022) Re-assessing the pest status of Tetranychus evansi (Acari: Tetranychidae) on solanaceous crops and farmers control practices in Benin. J. Agric. Food Res., 10: 100401. doi: 10.1016/j.jafr.2022.100401

Baker, E. W. (1949) The genus Brevipalpus (Acarina: Pseudoleptidae). Am. Midl. Nat., 44: 350402. doi: 10.2307/2422013

Baker, E. W. and Pritchard, A. E. (1960) The Tetranychoid mites of Africa. Hilgardia, 29: 455574. doi: 10.3733/hilg.v29n11p455

Banks, N. and Banks, N. (1917) New mites, mostly economic (Arach., Acar.). Entomol. News, 28: 193199.

CABI (2024) Crop Protection Compendium. Datasheet: Brevipalpus chilensis (Chilean false red mite). https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.10173 (2024-8-7閲覧)

Cagle, L. R. (1956) Life history of the spider mite, Tetranychus atlanticus McGregor. Virginia Agric. Exp. Sta. Tech. Bull., 124: 122.

Ehara, S. and Ohashi, K. (2002) A new species of Tetranychus (Acari: Tetranychidae) from the Kinki district, Japan. Acta Arachnol., 51: 1922. doi: 10.2476/asjaa.51.19

EPPO (2023) Tetranychus evansi: World distribution. https://gd.eppo.int/taxo/TETREV/distribution (2023-6-3閲覧)

Escudero, L. A. and Ferragut, F. (2005) Life-history of predatory mites Neoseiulus californicus and Phytoseiulus persimilis (Acari: Phytoseiidae) on four spider mite species as prey, with special reference to Tetranychus evansi (Acari: Tetranychidae). Biol. Control, 32: 378384. doi: 10.1016/j.biocontrol.2004.12.010

Furtado, I. P. et al. (2007) Potential of a Brazilian population of the predatory mite Phytoseiulus longipes as a biological control agent of Tetranyhchus evansi (Acari: Phytoseiidae, Tetranychidae). Biol. Control, 42: 139147. doi: 10.1016/j.biocontrol.2007.04.016

Gotoh, T. and Kaidzuka, T. (2022) Why does Tetranychus evansi not threaten solanaceous vegetables in Japan? Zoosymposia, 22: 43. doi: 10.11646/zoosymposia.22.1.13

Gotoh, T. et al. (2009) Evidence of co-specificity between Tetranychus evansi and Tetranychus takafujii (Acari: Prostigmata, Tetranychidae): Comments on taxonomic and agricultural aspects. Internat. J. Acarol., 35: 485501. doi: 10.1080/01647950903431156

Gotoh, T. et al. (2010) Reproductive performance of seven strains of the tomato red spider mite Tetranychus evansi (Acari: Tetranychidae) at five temperatures. Exp. Appl. Acarol., 52: 239259. doi: 10.1007/s10493-010-9362-z

Gutierrez, J. and Etienne, J. (1986) Les Tetranychidae de lîle de la Réunion et quelques-uns de leurs prédateurs. Agron. Trop., 41: 8491.

Gutierrez, J. and Schicha, E. (1983) The spider mite family Tetranychidae (Acari) in New South Wales. Int. J. Acarol., 9: 99116. doi: 10.1080/01647958308683322

Gutue, C. et al. (2012) Mites associated with parks and ornamental gardens in urban area - Bucharest. Sci. Papers Ser. B Hortic., 56: 351356. https://horticulturejournal.usamv.ro/pdf/Vol.LVI/Art62.pdf

Jeppson, L. R. et al. (1975) Mites Injurious to Economic Plants. University of California Press.

Kiss, E. et al. (2017) Can we use the predatory mites against the invasive bamboo pest spider mites? Acta Phytopathol. Entomol. Hung., 52: 9196. doi: 10.1556/038.52.2017.014

Knegt, B. et al. (2020) Tetranychus evansi spider mite populations suppress tomato defenses to varying degrees. Ecol. Evol., 10: 43754390. doi: 10.1002/ece3.6204

Koller, M. et al. (2007) Direct and indirect adverse effects of tomato on the predatory mite Neoseiulus californicus feeding on the spider mite Tetranychus evansi. Entomol. Exp. Appl., 125: 297305. doi: 10.1111/j.1570-7458.2007.00625.x

Kontschán, J. and Ripka, G. (2017) Checklist of the Hungarian spider mites and flat mites (Acari: Tetranychidae and Tenuipalpidae). Syst. Appl. Acarol., 22: 11991225. doi: 10.11158/saa.22.8.6

Kontschán, J. et al. (2014) Adatok a magyarországi bambuszok atkáihoz/Data on the mite (Acari) fauna of bamboos in Hungary. Növényvédelem, 50: 339343. https://www.researchgate.net/publication/274309238_Adatok_a_magyarorszagi_bambuszok_atkaihoz_Data_on_the_mite_Acari_fauna_of_bamboos_in_Hungary

Lindquist, E. E. (1985) External anatomy. In: Spider Mites. Their Biology, Natural Enemies and Control. Volume 1A (Helle, W. and Sabelis, M. W. eds.). pp. 328, Elsevier.

真﨑 誠ほか (1991) 輸入カボチャから捕捉された数種ハダニおよび捕食性アザミウマについて. 植物防疫所調査研究報告, 27: 107114.

McGregor, E. A. (1950) Mites of the family Tetranychidae. Amer. Midi. Nat., 44: 257420. doi: 10.2307/2421963

Mesa, N. C. et al. (2009) A catalog of the Tenuipalpidae (Acari) of the World with a key to genera. Zootaxa, 2098: 1185. doi: 10.11646/zootaxa.2098.1.1

Migeon, A. and Dorkeld, F. (2023) Spider Mites Web: A comprehensive database for the Tetranychidae. https://www1.montpellier.inra.fr/CBGP/spmweb/ (2023-6-4閲覧)

Migeon, A. and Dorkeld, F. (2024) Spider Mites Web: A comprehensive database for the Tetranychidae. https://www1.montpellier.inra.fr/CBGP/spmweb (2024-8-7閲覧)

Moraes, G. J. and McMurtry, J. A. (1985) Comparison of Tetranychus evansi and T. urticae [Acari: Tetranychidae] as prey for eight species of phytoseiid mites. Entomophaga, 30: 393397. doi: 10.1007/BF02372345

Naves, P. et al. (2021) Updated and annotated review of Tetranychidae occurring in mainland Portugal, the Azores, and Madeira Archipelagos. Acarologia, 61: 380393. doi: 10.24349/acarologia/20214437

農林水産省植物防疫所 (2024) 植物検疫統計. 統計レポート. http://www.pps.go.jp/TokeiWWW/Pages/report/index.xhtml (2024-8-7閲覧)

Ostoja-Starzewski, J. (2000) Schizotetranychus celarius (Banks) (Acari: Prostigmata) a mite pest of bamboo; first records for Britain and two new host records. Br. J. Ent. Nat. Hist., 13: 9597. https://biostor.org/reference/129555

Pellizzari, G. and Duso, C. (2009) Occurrence of Stigmaeopsis nanjingensis in Europe. Bull. Insectology, 62: 149151. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d5e92f98756bf8e21e93c3ca6351239c7e14d8b5

Pratt, P. D. and Croft, B. A. (2000) Expanded distribution of the bamboo spider mite, Schizotetranychus longus (Acari: Tetranychidae), and predation by Neoseiulus fallacis (Acari: Phytoseiidae). Acarologia, 40: 191197. https://www1.montpellier.inra.fr/CBGP/acarologia/article.php?id=178

齋藤 裕 (2018) スゴモリハダニ類 (ダニ目: ハダニ科) の生物学. 日本応用動物昆虫学会誌, 62: 215229. doi: 10.1303/jjaez.2018.215

Saito, Y. et al. (2018) Description of two new species of Stigmaeopsis, Banks 1917 (Acari, Tetranychidae) inhabiting Miscanthus grasses (Poaceae). Acarologia, 58: 414429. doi: 10.24349/acarologia/20184250

Saito, Y. et al. (2019) New Stigmaeopsis species on Miscanthus grasses in Taiwan and Thailand (Acari, Tetranychidae). Syst. Appl. Acarol., 24: 675682. doi: 10.11158/saa.24.4.12

Sarmento, R. A. (2011) An acarine herbivore interferes with direct and indirect plant defences. PhD thesis, University of Amsterdam

Sarmento, R. A. et al. (2011) A herbivore that manipulates plant defense. Ecol. Lett., 14: 229236. doi: 10.1111/j.1461-0248.2010.01575.x

Saunyana, I. G. M. and Knapp, M. (2003) Effect of pruning and trellising of tomatoes on red spider mite incidence and crop yield in Zimbabwe. Afr. Crop Sci. J., 11: 269277. doi: 10.4314/acsj.vlli4.27577

Seeman, O. D. and Beard, J. J. (2011) Identification of exotic pest and Australian native and naturalized species of Tetranychus (Acari: Tetranychidae). Zootaxa, 2961: 172. doi: 10.11646/zootaxa.2961.1.1

Seljak, G. (2015) The bamboo spider mite Aponychus corpuzae Rimando (Acari: Tetranychidae); first record in the West-Palaearctic. EPPO Bulletin, 45: 199204. doi: 10.1111/epp. 12201

Sugasawa, J. et al. (2002) Hybrid affinities between the green and the red forms of the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae) under laboratory and semi-natural conditions. Appl. Entomol. Zool., 37: 127139. doi: 10.1303/aez.2002.127

 

第10章 実験法

Abbot, W. S. (1925) A method of computing the effectiveness of an insecticide. J. Econ. Entomol., 18: 265267. doi: 10.1093/jee/18.2.265a

Aizawa M. et al. (2018) A simple method of monitoring for cypermethrin resistance in Thrips tabaci (Thysanoptera: Thripidae) using agar-coated glass pipettes. Appl. Entomol. Zool., 53: 165170. doi: 10.1007/s13355-017-0541-9

天野 洋・後藤哲雄 (2009) 植物ダニ類の標本作成法と飼育法. 「原色植物ダニ検索図鑑」(江原昭三・後藤哲雄編). pp. 301306, 全国農村教育協会.

Ballare, K. M. et al. (2019) Utilizing field collected insects for next generation sequencing: Effects of sampling, storage, and DNA extraction methods. Ecol. Evol., 9: 1369013705. doi: 10.1002/ece3.5756

Bates, J. W. (1997) The slide-sealing compound Glyceel. J. Nematol., 29: 565566.

Castalanelli, M. A. et al. (2010) A rapid non-destructive DNA extraction method for insects and other arthropods. J. Asia Pac. Entomol., 13: 243248. doi: 10.1016/j.aspen.2010.04.003

Cazaux, M. et al. (2014) Application of two-spotted spider mite Tetranychus urticae for plant-pest interaction studies. J. Vis. Exp., e51738. doi: 0.3791/51738

Chomczynski, P., and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem., 162: 156159. doi: 10.1006/abio.1987.9999

GoldSchmidt, T. et al. (2020) Description of three new water mite species of Hygrobates Koch, 1837 (Lurchibates Goldschmidt & Fu, 2011) (Acari, Hydrachnidia, Hygrobatidae), parasitic in newts of the genera Paramesotriton and Pachytriton (Amphibia, Caudata, Salamandridae) from China. Zootaxa, 4768: 2542. doi: 10.11646/zootaxa.4768.1.3

後藤哲雄 (1996) 飼育法. 「植物ダニ学」(江原昭三・真梶徳純編). pp. 314319, 全国農村教育協会.

後藤哲雄 (2023) 農業ダニの分類. 「農業昆虫学」 (藤崎憲治・石川幸男編). pp. 3755, 朝倉書店.

Gutierrez, J. (1985) Mounting techniques. In: Spider Mites. Their Biology, Natural Enemies and Control. Volume 1A (Helle, W. and Sabelis, M. W. eds.), pp. 351353, Elsevier.

浜村徹三 (1996) 薬剤実験法. 「植物ダニ学」(江原昭三・真梶徳純編). pp. 323330, 全国農村教育協会.

浜村徹三 (1997) 植物防疫基礎講座 農業害虫および天敵昆虫等の薬剤感受性検定マニュアル (15) 野菜・花き害虫: ハダニ類. 植物防疫, 51: 547549.

Hamdi, F. A. et al. (2023) An octopamine receptor involved in feeding behavior of the two-spotted spider mite, Tetranychus urticae Koch: A possible candidate for RNAi-based pest control. Entomol. Gen., 43.: 8997. doi: 10.1127/entomologia/2023/1808

Hartley, H. (1951) Origin of the word ‘protein’. Nature, 168: 244244. doi: 10.1038/168244a0

Helle, W. and Overmeer, W. P. J. (1985) Rearing Techniques. In: Spider Mites. Their Biology, Natural Enemies and Control. Volume 1A (Helle, W. and Sabelis, M. W. eds.). pp. 331335, Elsevier

Hiruta, S. F. et al. (2018) A preliminary molecular phylogeny shows Japanese and Austrian populations of the red mite Balaustium murorum (Acari: Trombidiformes: Erythraeidae) to be closely related. Exp. Appl. Acarol., 74: 225238. doi: 10.1007/s10493-018-0228-0

Johnson, K. P. et al. (2004) Multiple origins of parasitism in lice. Proc. R. Soc. B Biol. Sci., 271: 17711776. doi: 10.1098/rspb.2004.2798

Krantz, G. W. and Walter, D. E. eds. (2009) A Manual of Acarology. 3rd ed. Texas Tech University Press.

國本佳範・今村剛士 (2016) 葉片浸漬法と散布法によるナミハダニの薬剤感受性の比較および簡易なハダニ接種法の開発. 関西病虫研報, 58: 1316. doi: 10.4165/kapps.58.13

國本佳範・今村剛士 (2017) ナミハダニの薬剤感受性検定における簡易な接種法の開発. 植物防疫, 71: 154158.

國本佳範ほか (2017) 回転式散布塔に代わる散布装置の構築. 日本応用動物昆虫学会誌, 61: 192194. doi: 10.1303/jjaez.2017.192

Kwon, D. H. et al. (2010) Residual contact vial bioassay for the on-site detection of acaricide resistance in the two-spotted spider mite. J. Asia Pac. Entomol., 13: 333337. doi: 10.1016/j.aspen.2010.05.005

溝部信二ほか (2015) ハダニの簡易薬剤感受性検定法の開発. 山口農林総技セ研報, 6: 2932.

Mullin, V. E. et al. (2023) First large-scale quantification study of DNA preservation in insects from natural history collections using genome-wide sequencing. Methods in Ecology and Evolution, 14: 360371. doi: 10.1111/2041-210X.13945

Nakahama, N. et al. (2019). Methods for retaining well-preserved DNA with dried specimens of insects. Eur. J. Entomol., 116: 486491. doi: 10.14411/eje.2019.050

Ojeda-Martinez, D. et al. (2020) Saving time maintaining reliability: A new method for quantification of Tetranychus urticae damage in Arabidopsis whole rosettes. BMC Plant Biol., 20: 119. doi: 10.1186/s12870-020-02584-0

刑部正博 (2016) フィールド&ラボ〜知って得する豆知識③〜簡単, 便利〜ハダニ接種用小型吸虫管. 植物防疫, 70: 126128.

Osakabe, M. et al. (2005) Significance of habitat type for the genetic population structure of Panonychus citri (Acari:Tetranychidae). Exp. Appl. Acarol., 36: 2540. doi: 10.1007/s10493-005-1672-1

Ota, A. et al. (2011) Non-destructive DNA extraction protocol for oribatid mites (Acari: Oribatida). Edaphologia, 89: 1924.

Pfingstl, T. et al. (2024) Mitochondrial metagenomics reveal the independent colonization of the worlds coasts by intertidal oribatid mites (Acari, Oribatida, Ameronothroidea). Sci. Rep., 14: 11634.
doi: 10.1038/s41598-024-59423-7

齋藤 裕 (1996) 走査型電子顕微鏡用標本. 「植物ダニ学」(江原昭三・真梶徳純編). pp. 313314, 全国農村教育協会.

Saito, Y. and Suzuki, R. (1987) Reexamination of several rearing methods for studying the life history of spider mites (Acari: Tetranychidae). Appl. Entomol. Zool., 22: 570576. doi: 10.1303/aez.22.570

Schindelin, J. et al. (2012) Fiji: an open-source platform for biological-image analysis. Nat. Methods, 9: 676682. doi: 10.1038/nmeth.2019

柴尾 学 (2013) 植物防疫基礎講座: 殺虫剤感受性検定マニュアル (4) アザミウマ類. 植物防疫, 67: 248251.

島野智之 (2015)「ダニ・マニア 増補改定版」. 八坂書房.

島野智之 (2021) 「ダニが刺したら穴2つは本当か?」. 風濤社.

Smith, P. E. et al. (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem., 150: 7685. doi: 10.1016/0003-2697(85)90442-7

Sommer, C. et al. (2011) Ilastik: Interactive learning and segmentation toolkit. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 230233, IEEE. doi: 10.1109/ISBI.2011.5872394

鈴木祥夫 (2018) 総タンパク質の定量法. ぶんせき, 1: 29.

高梨祐明ほか (2009) リンゴのナミハダニ防除薬剤の実用性判定における葉片浸漬法の評価. 東北農研研報, 110: 177186.

Thorne, G. (1935) Notes on free-living and plant-parasitic nematodes, II. Proc. Helminthol. Soc. Washington, 2: 9698.

Tixier, M. S. et al. (2010) Voucher specimens for DNA sequences of Phytoseiid mites (Acari: Mesostigmata). Acarologia, 50: 487494. doi: 10.1051/acarologia/20101984

Uesugi, R. et al. (2009a) Evidence of a high level of gene flow among apple trees in Tetranychus urticae. Exp. Appl. Acarol., 49: 281290. doi: 10.1007/s10493-009-9267-x

Uesugi, R. et al. (2009b) The fine-scale genetic structure of the two-spotted spider mite in a commercial greenhouse. Exp. Appl. Acarol., 47: 99109. doi: 10.1007/s10493-008-9201-7

Vickery, H. B. (1950) The origin of the word protein. Yale J. Biol. Med., 22: 387.

Wang, Z, et al. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Na.t Rev. Genet., 10: 5763. doi: 10.1038/nrg2484

 

付録(分類表)

André, H. M. (2021) The Tydeoidea (Ereynetidae, Iolinidae, Triophtydeidae and Tydeidae) - An online database in the Wikispecies platform. Acarologia, 61: 10231035. doi: 10.24349/6yc5-1lxw

Demite, P. R. et al. (2024) Phytoseiidae Database. http://www.lea.esalq.usp.br/phytoseiidae/ (2024-8-7閲覧)

江原昭三 (2009) ヒメハダニ科およびケナガハダニ科の概説と同定. 「原色植物ダニ検索図鑑」(江原昭三・後藤哲雄編). pp. 223229, 全国農村教育協会.

江原昭三・後藤哲雄 (2009) ハダニ科の概説と同定. 「原色植物ダニ検索図鑑」(江原昭三・後藤哲雄編). pp. 204222, 全国農村教育協会.

 


mite2

(C)2024 無断転用を禁ず