文献

最終更新日:2024年11月21日

tick

 第2章  第3章  第4章
 第5章  第6章  第7章  付録(分類表)

第2章 分類

Alekseev, A. N. and Dubinina, H. V. (1996) Exchange of Borrelia burgdorferi between Ixodes persulcatus (Ixodidae: Acarina) sexual partners. J. Med. Entomol., 33: 351–354. doi: 10.1093/jmedent/33.3.351

Amerson, A. B. Jr. (1968) Tick distribution in the Central Pacific as influenced by sea bird movement. J. Med. Entomol., 5: 332–339. doi: 10.1093/jmedent/5.3.332

安藤秀二・藤田博己 (2013) 国内における紅斑熱群リケッチア症を媒介するマダニ類と病原体との多様な関係. 衛生動物, 64: 5–7. doi: 10.7601/mez.64.5

Ando, S. et al. (2010) Human Rickettsia heilongjiangensis infection, Japan. Emerg. Infect. Dis., 16: 1306–1308. doi: 10.3201/eid1608.100049

Apanaskevich, M. A. and Apanaskevich, D. A. (2015) Reinstatement of Dermacentor bellulus (Acari: Ixodidae) as a valid species previously confused with D. taiwanensis and comparison of all parasitic stages. J. Med. Entomol., 52: 573–595. doi: 10.1093/jme/tjv034

Barker, S. C. and Burger, T. D. (2018) Two new genera of hard ticks, Robertsicus n. gen. and Archaeocroton n. gen., and the solution to the mystery of Hoogstraal’s and Kaufman’s “primitive” tick from the Carpathian Mountains. Zootaxa, 4500, 543–552. doi: 10.11646/ZOOTAXA.4500.4.4

Beati, L. and Klompen, H. (2019) Phylogeography of ticks (Acari: Ixodida). Ann. Rev. Entomol., 64: 379–397. doi: 10.1146/annurev-ento-020117-043027

Brusca, R. C. et al. eds. (2016) Invertebrates. Sinauer Associates.

Chitimia-Dobler, L. et al. (2017) Amblyomma birmitum a new species of hard tick in Burmese amber. Parasitology, 144: 1441–1448. doi: 10.1017/S0031182017000853

Chitimia-Dobler, L. et al. (2018) Haemaphysalis cretacea a nymph of a new species of hard tick in Burmese amber. Parasitology, 145: 1440–1451. doi: 10.1017/S0031182018000537

Clifford, C. M. and Anastos, G. (1960) The use of chaetotaxy in the identification of larval ticks (Acarina: Ixodidae). J. Parasitol., 46: 567–578. doi: 10.2307/3274939

Dubinina, H. V. (2000) Some peculiarities of the mating behavior in Ixodes persulcatus and Ixodes ricinus ticks (Acarina, Ixodidae): Differences in a sexual transmission of the species of Borrelia. Acarina, 8: 125–131.

Dunlop, J. A. (2010) Geological history and phylogeny of Chelicerata. Arthropod Struct. Dev.39: 124–142. doi: 10.1016/j.asd.2010.01.003

Durden, L. A. and Beati, L. (2013) Chapter 2 Modern tick systematics. In: Biology of ticks, volume 1 (Sonenshine, D. E. and Roe, R. M. eds.), pp. 17–58. Oxford University Press.

Egizi, A. et al. (2020) First glimpse into the origin and spread of the Asian longhorned tick, Haemaphysalis longicornis, in the United States. Zoonoses Public Health, 67: 637–650. doi: 10.1111/zph.12743

Estrada-Peña, A. et al. (2017) Genus Haemaphysalis Koch, 1844. Ticks of Europe and North Africa: A Guide to Species Identification (Estrada-Peña, A. et al. eds.). pp. 225–229. Springer.

Fournier, P.-E. et al. (2002) Genetic identification of rickettsiae isolated from ticks in Japan. J. Clin. Microbiol., 40: 2176–2181. doi: 10.1128/jcm.40.6.2176-2181.2002

Fujimoto, K. (1990a) Ecological studies on ixodid ticks. 8. Parasitism by immature stages of the tick Ixodes nipponensis (Acarina: Ixodidae) of the lizard Takydromus tachydromoides (Lacertilia: Lacertidae). Jpn. J. Environ. Entomol. Zool., 2: 14–24. doi: 10.11257/jjeez.2.14

Fujimoto, K. (1990b) Ecological studies on ixodid ticks. 9. Feeding and development of larval and nymph forms of Ixodes nipponensis (Acarina: Ixodidae) reared on the hosts. Jpn. J. Environ. Entomol. Zool., 2: 25–30. doi: 10.11257/jjeez.2.25

Fujisaki, K. et al. (1976) Comparative observations on some bionomics of Japanese ixodid ticks under laboratory cultural conditions. Natl. Inst. Anim. Health Q. (Jpn.), 16: 122–128.

Fujita, H. and Takada, N. (1978) Studies on ixodid fauna in the northern part of Honshu, Japan: 3. Preliminary notes on Ixodes nipponensis (IxodoideaIxodidae) found on the small reptile, Takydromus tachydromoides. Jpn. J. Sanit. Zool., 29: 269–271. doi: 10.7601/mez.29.269

藤田博己・高田伸弘 (2007) マダニ類から検出されるリケッチアの多様性. 「ダニと新興再興感染症」(SADI組織委員会編). pp. 129–139. 全国農村教育協会.

藤田博己ほか (1981) 埼玉県および群馬県における哺乳類と鳥類に寄生するマダニ類1. 宿主関係, 地理的ならびに垂直分布, およびその医学的意義. 大原綜合病院年報, 24: 13–27.

Fujita, H. et al. (1996) Survey of ixodid ticks (Acarina: Ixodidae) and tick-borne spotted fever group rickettsiae in Tokunoshima Island, Japan. Jpn. J. Sanit. Zool., 47: 15–21. doi: 10.7601.mez.47.15

藤田博己ほか (1999) 鹿児島県本土域におけるマダニ相調査およびマダニ保有微生物の検索. 日本ダニ学会誌, 8: 9–19. doi: 10.2300/acari.8.9

Fujita, H. et al. (1999) List of all isolates of spotted fever group rickettsiae from ticks in Japan 1993–1998. Annu. Rep. Ohara Hosp., 42: 45–50.

Fujita, H. et al. (2002) Preliminary report on rickettsial strains of spotted fever group isolated from ticks of China, Nepal and Thailand. Annu. Rep. Ohara Hosp., 44: 15–18.

Gaowa et al. (2013) Rickettsiae in ticks, Japan, 2007–2011. Emerg. Infect. Dis., 19: 338–340. doi: 10.3201/eid1902.120856

Guglielmone, A. A. and Robbins, R. G. (2018) Hard Ticks (Acari: Ixodida: Ixodidae) Parasitizing Humans: A Global Overview. Springer.

Guglielmone, A. A. et al. (2010) The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: A list of valid species names. Zootaxa, 2528: 1–28. doi: 10.11646/zootaxa.2528.1.1

Guglielmone, A. A. et al. (2014) The Hard Ticks of the World (Acari: Ixodida: Ixodidae). Springer.

Guglielmone, A. A. et al. (2021) Neotropical hard ticks (Acari: Ixodida: Ixodidae): A critical analysis of their taxonomy, distribution, and host relationships. Springer.

Hoogstraal, H. (1969) Haemaphysalis (Alloceraea) kitaokai sp. n. of Japan, and keys to species in the structurally primitive subgenus Alloceraea Schulze of Eurasia (Ixodoidea, Ixodidae). J. Parasitol., 55: 211–221. doi: 10.2307/3277375

Hoogstraal, H. et al. (1965) Studies on Southeast Asian Haemaphysalis ticks. (Ixodoidea, Ixodidae). The identity, distribution, and hosts of H. (Kaiseriana) hystricis Supino. J. Parasitol., 51: 467–480.

Hoogstraal, H. et al. (1968) Review of Haemaphysalis (Kaiseriana) longicornis Neumann (resurrected) of Australia, New Zealand, New Caledonia, Fiji, Japan, Korea, and northeastern China and USSR, and its parthenogenetic and bisexual populations (Ixodoidea, Ixodidae). J. Parasitol., 54: 1197–1213.

Hoogstraal, H. et al. (1973) Ixodes (Partipalpiger) ovatus Neumann, subgen. nov.: Identity, hosts, ecology, and distribution (Ixodoidea: Ixodidae). J. Med. Entomol., 10: 157–164. doi: 10.1093/jmedent/10.2.157

Hornok, S. et al. (2020) Molecular phylogeny of Amblyomma exornatum and Amblyomma transversale, with reinstatement of the genus Africaniella (Acari: Ixodidae) for the latter. Ticks Tick Borne Dis., 11: 101494. doi: 10.1016/j.ttbdis.2020.101494

Howard, R. J. et al. (2020) Arachnid monophyly: Morphological, palaeontological and molecular support for a single terrestrialization within Chelicerata. Arthropod Struct. Dev., 59: 100997. doi: 10.1016/j.asd.2020.100997

石畝 史ほか (2014) 福井県における日本紅斑熱の感染環調査 (1) 2014年の患者発生を受け媒介種のスクリーニング調査. 福井県衛生環境研究センター年報, 13: 67–69.

Iwanaga, S. et al. (2014) Horizontal gene transfer of a vertebrate vasodilatory hormone into ticks. Nat. Commun., 5, 3373. doi: 10.1038/ncomms4373

上村 清 (1986)「暮らしの中のおじゃま虫」. 井上書院.

上村 清・近藤力王至 (1977) コウモリマルヒメダニの人体寄生3例について. 衛生動物, 28: 248–249. doi: 10.7601/mez.28.248

Keirans, J. E. (2009) Ixodida. In: A Manual of Acarology, 3rd ed. (Krantz, G. W. and Walter, D. E. eds.). Texas Tech University Press.

北岡茂男 (1977) マダニ類の吸血とその水分・イオン平衡. 「ダニ学の進歩その医学・農学・獣医学・生物学にわたる展望」(佐々 学・青木淳一編). pp. 473–487, 北隆館.

Kitaoka, S. and Morii, T. (1967) The biology of Haemaphysalis (Alloceraea) ambigua Neumann, 1901 with description of immature stages (Ixodoidea, Ixodidae). Natl. Inst. Anim. Health Q., 7: 145–152.

Kobayashi, D. et al. (2021) Detection of Jingmenvirus in Japan with evidence of vertical transmission in ticks. Viruses, 13: 2547. doi: 10.3390/v13122547

Kodama, F. et al. (2021) A novel nairovirus associated with acute febrile illness in Hokkaido, Japan. Nat. Commun., 12: 5539. doi: 10.1038/s41467-021-25857-0

Kotani, K. et al. (2022) First recorded of Ixodes kerguelenensis (Acari: Ixodidae) collected from a short-tailed shearwater Puffinus tenuirostris in Japan. Med. Entomol. Zool., 73: 157–159. doi: 10.7601/mez.73.157

Krantz, G. W. and Walter, D. E. eds. (2009) A Manual of Acarology. 3rd ed. Texas Tech University Press.

Lee, S. H. et al. (2002) Characterization of Borrelia afzelii isolated from Ixodes nipponensis and Apodemus agrarius in Chungju, Korea, by PCR-RFLP analyses of ospC gene and rrf (5S)rrl (23S) intergenic spacer. Microbiol. Immunol., 46: 677–683. doi: 10.1111/j.1348-0421.2002.tb02751.x

Lozano-Fernandez, J. et al. (2020) A Cambrian–Ordovician terrestrialization of arachnids. Front. Genet., 11: 182. doi: 10.3389/fgene.2020.00182

Mans, B. J. et al. (2011). Nuttalliella namaqua: A living fossil and closest relative to the ancestral tick lineage: Implications for the evolution of blood-feeding in ticks. PLoS One, 6(8), e23675. doi: 10.1371/journal.pone.0023675

Mans, B. J. et al. (2014) The host preferences of Nuttalliella namaqua (Ixodoidea: Nuttalliellidae): A generalist approach to surviving multiple host-switches. Exp. Appl. Acarol., 62, 233–240. doi: 10.1007/s10493-013-9737-z

Nakao, R. et al. (2021) Amblyomma testudinarium infestation on a brown bear (Ursus arctos yesoensis) captured in Hokkaido, a northern island of Japan. Parasitol. Int., 80 (article 102209): 1–6. doi: 10.1016/j.parint.2020.102209

夏秋 優ほか (2013) タカサゴキララマダニ刺症に伴う遊走性紅斑: Tick-associated rash illness (TARI). 衛生動物, 64: 47–49.

Nolan, E. D. et al. (2020) Developmental gene expression as a phylogenetic data class: Support for the monophyly of Arachnopulmonata. Dev. Genes Evol., 230, 137–153. doi: 10.1007/s00427-019-00644-6

Oliver, J. H. Jr. et al. (1973) Cytogenetics of ticks (Acari: Ixodoidea) 12. Chromosome and hybridization studies of bisexual and parthenogenetic Haemaphysalis longicornis races from Japan and Korea. Chromosoma, 42: 269–288. doi: 10.1007/BF00284775

佐藤 (大久保) 梢ほか (2019) ダニ媒介性感染症国内に常在する感染症を主に. 衛生動物, 70: 3–14. doi: 10.7601/mez.70.3

Shibata, S. et al. (2000) New Ehrlichia species closely related to Ehrlichia chaffeensis isolated from Ixodes ovatus ticks in Japan. J. Clin. Microbiol., 38: 1331–1338. doi: 10.1128/jcm.38.4.1331-1338.2000

島野智之 (2018) (総説)ダニ類の高次分類体系の改訂について高次分類群の一部の和名改称を含む. 日本ダニ学会誌, 27: 51–68. doi: 10.2300/acari.27.51

Shin, S. H. et al. (2013) Detection of Rickettsia monacensis from Ixodes nipponensis collected from rodents in Gyeonggi and Gangwon Provinces, Republic of Korea. Exp. Appl. Acarol., 61, 337–347. doi: 10.1007/s10493-013-9699-1

高田伸弘 (1990)「病原ダニ類図譜」. 金芳堂.

高田伸弘 (1994) わが国における病原媒介性ダニ類の分布. 「ダニと疾患のインターフェイス」(SADI組織委員会編). pp. 2–8. YUKI書房.

高田伸弘・藤田博己 (2019) 日本産マダニ類の分類 (全種総括). 「医ダニ学図鑑―見える分類と疫学」(高田伸弘ほか). pp. 115–117, 北隆館.

高田伸弘ほか (1978) 東北地方におけるマダニ類の研究: 2. マダニ寄生例, とくに大形種カモシカマダニによる多数例について. 衛生動物, 29: 216–218. doi: 10.7601/mez.29.216

高田伸弘ほか (1992) 日本紅斑熱の媒介動物. 感染症学雑誌, 66: 1218–1225. doi: 10.11150/kansenshogakuzasshi1970.66.1218

高田伸弘ほか (2022) 邦産カクマダニ属の再検討, taiwanensisbellulusとなる. ダニ研究, 17: 8–16.

Takano, A. et al. (2014) Construction of a DNA database for ticks collected in Japan: Application of molecular identification based on the mitochondrial 16S rDNA gene. Med. Entomol. Zool., 65: 13–21. doi: 10.7601/mez.65.13

Takano, A. et al. (2023) Description of three new bat-associated species of hard ticks (Acari, Ixodidae) from Japan. ZooKeys, 1180: 1–26. doi: 10.3897/zookeys.1180.108418

Takeda, T. et al. (1998) Isolation of tick-borne encephalitis virus from Ixodes ovatus (Acari: Ixodidae) in Japan. J. Med. Entomol., 35: 227–231. doi: 10.1093/jmedent/35.3.227

Thekisoe, O. M. et al. (2007) A trypanosome species isolated from naturally infected Haemaphysalis hystricis ticks in Kagoshima Prefecture, Japan. Parasitology, 134: 967–974. doi: 10.1017/S0031182007002375

Tsunoda, T. (2004) Tick bite cases in researchers studying deer in Boso Peninsula, central Japan. Med. Entomol. Zool., 55: 243–245. doi: 10.7601/mez.55.243

鶴見みや古ほか (2002) 伊豆諸島鳥島のクロアシアホウドリのコロニーにみるCarios (Ornithodoros) capensisの生息状況およびその疫学調査. 山階鳥類研究所研究報告, 34: 250–256. doi: 10.3312/jyio1952.34.250

内川公人・仲間秀典 (2001) マダニ類. 「原色ペストコントロール図説 第5集」(日本ペストコントロール協会編). pp. 36–51. 日本ペストコントロール協会.

和田康夫ほか (2000) マダニ幼虫の多数寄生について. 大原綜合病院年報, 43: 23–26.

Wang, T. et al. (2019) Tick mitochondrial genomes: structural characteristics and phylogenetic implications. Parasit. Vectors, 12: 1–15. doi: 10.1186/s13071-019-3705-3

山口 昇 (1984) その他の野鳥由来のダニ類. 「害虫駆除シリーズ2 ダニとその駆除」(佐々 学編). p.99. 日本環境衛生センター.

山口 昇 (1994) マダニによる人体刺咬症例の概要. 「ダニと疾患のインターフェイス」(SADI 組織委員会編). pp. 16–23. YUKI書房.

山口 昇・北岡茂男 (1980) ヒメダニ科. 「日本ダニ類図鑑」(江原昭三編). pp. 144–145. 全国農村教育協会.

Yamaguti, N. et al. (1971) Ticks of Japan, Korea, and the Ryukyu Islands. Brigham Young University Science Bulletin Biological Series, 15: 1–226.

山根洋右ほか (1994) ヒゲナガチマダニ (Haemaphysalis kitaokai Hoogstraal) の人体咬着例. 衛生動物, 45: 222.

山内健生 (2001) 日本産鳥類とマダニ類との宿主寄生関係に関する文献的検索. ホシザキグリーン財団研究報告, 5: 271–308.

Yamauchi, T. and Funakoshi, K. (2000) Ticks (Acari: Ixodoidea) from Chiroptera (Mammalia) of the Kyushu mainland, Japan. J. Acarol. Soc. Jpn., 9: 51–54.

山内健生・高田 歩 (2015) 日本本土に産するマダニ科普通種の成虫の図説. ホシザキグリーン財団研究報告, 18: 287–305.

山内健生・渡辺 護 (2010) 家屋内で採集したコウモリマルヒメダニ. 家屋害虫, 32: 23–25.

Yamauchi, T. et al. (2009) Tick fauna associated with sika deer density in the Shimane Peninsula, Honshu, Japan. Med. Entomol. Zool., 60: 297–304. doi: 10.7601/mez.60.297

Yamauchi, T. et al. (2012) Human infestation by Amblyomma testudinarium (Acari: Ixodidae) in Malay Peninsula, Malaysia. J. Acarol. Soc. Jpn., 21: 143–148. doi: 102300/acari.21.143

Yano, Y. et al. (1993) Ultrastructure of spotted fever rickettsialike microorganisms observed in tissues of Dermacentor taiwanensis (Acari: Ixodidae). J. Med. Entomol., 30: 579–585. doi: 10.1093/jmedent/30.3.579

Yoshii, K. et al. (2017) Tick-borne encephalitis in Japan, Republic of Korea and China. Emerg. Microbes Infect., 6: e82. doi: 10.1038/emi.2017.69

Zhang, Z.-Q. (2013) Phylum Arthropoda. In: Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013) (Zhang, Z.-Q. ed.). Zootaxa, 3703: 17–26. doi: 10.11646/zootaxa.3703.1.6

 

第3章 形態と生理・生化学

Adamson, S. et al. (2014) Transcriptional activation of antioxidants may compensate for selenoprotein deficiencies in Amblyomma maculatum (Acari: Ixodidae) injected with selK- or selM-dsRNA. Insect Mol. Biol., 23: 497–510. doi: 10.1111/imb.12098

Alim, M. A. et al. (2007) Characterization of asparaginyl endopeptidase, legumain induced by blood feeding in the ixodid tick Haemaphysalis longicornis. Insect Biochem. Mol. Biol., 37: 911–922. doi: 10.1016/j.ibmb.2007.04.010

Alim, M. A. et al. (2008a) Developmental stage- and organ-specific expression profiles of asparaginyl endopeptidases/legumains in the ixodid tick Haemaphysalis longicornis. J. Vet. Med. Sci., 70: 1363–1366. doi: 10.1292/jvms.70.1363

Alim, M. A. et al. (2008b) HlLgm2, a member of asparaginyl endopeptidases/legumains in the midgut of the ixodid tick Haemaphysalis longicornis, is involved in blood-meal digestion. J. Insect Physiol., 54: 573–585. doi: 10.1016/j.jinsphys.2007.12.006

Allan, S. A. et al. (1989) Species recognition elicited by differences in composition of the genital sex pheromone in Dermacentor variabilis and D. andersoni (Acari: Ixodidae). J. Med. Entomol., 26: 539–546. doi: 10.1093/jmedent/26.6.539

Anguita, J. et al. (2002) Salp15, an Ixodes scapularis salivary protein, inhibits CD4+ T cell activation. Immunity, 16: 849–859. doi: 10.1016/s1074-7613(02)00325-4

Arrieta, M. C. et al. (2006) Antimicrobial activity in the egg wax of the African cattle tick Amblyomma hebraeum (Acari: Ixodidae). Exp. Appl. Acarol., 39: 297–313. doi: 10.1007/s10493-006-9014-5

Atkinson, P. W. and Binnington, K. C. (1973) New evidence on the function of the porose areas of ixodid ticks. Experientia, 29: 799–800. doi: 10.1007/BF01946293

Balashov, Yu. S. (1972) Bloodsucking ticks (Ixodoidea): Vectors of diseases of man and animals. Misc. Publ. Entomol. Soc. Am., 8: 163–376.

Ball, A. et al. (2009) Identification, functional characterization and expression patterns of a water-specific aquaporin in the brown dog tick, Rhipicephalus sanguineus. Insect Biochem. Mol. Biol., 39: 105–112. doi: 10.1016/j.ibmb.2008.10.006

Batista, I. F. et al. (2010) A new Factor Xa inhibitor from Amblyomma cajennense with a unique domain composition. Arch. Biochem. Biophys., 493: 151–156. doi: 10.1016/j.abb.2009.10.009

Battur, B. et al. (2009) LKR/SDH plays important roles throughout the tick life cycle including a long starvation period. PLoS One, 4: e7136. doi: 10.1371/journal.pone.0007136

Beaufays, J. et al. (2008) Ir-LBP, an Ixodes ricinus tick salivary LTB4-binding lipocalin, interferes with host neutrophil function. PLoS One, 3: e3987. doi: 10.1371/journal.pone.3987

Bergermann, S. et al. (1997) Morphology of the eyes in adult Hyalomma truncatum ticks (Acari: Ixodidae). Exp. Appl. Acarol., 21: 21–39. doi: 10.1023/a: 1018489208924

Binnington, K. C. (1978) Sequential changes in salivary gland structure during attachment and feeding of the cattle tick, Boophilus microplus. Int. J. Parasitol., 8(2): 97–115. doi: 10.1016/0020-7519(78)90004-8

Bissinger, B. W. et al. (2011) Synganglion transcriptome and developmental global gene expression in adult females of the American dog tick, Dermacentor variabilis (Acari: Ixodidae). Insect Mol. Biol., 20: 465–491. doi: 10.1111/j.1365-2583.2011.01086.x

Boldbaatar, D. et al. (2006) Molecular cloning and functional characterization of an aspartic protease from the hard tick Haemaphysalis longicornis. Insect Biochem. Mol. Biol., 36: 25–36. doi: 10.1016/j.ibmb.2005.10.003

Boldbaatar, D. et al. (2008) Tick vitellogenin receptor reveals critical role in oocyte development and transovarial transmission of Babesia parasite. Biochem. Cell Biol., 86: 331–344. doi: 10.1139/o08-071

Boldbaatar, D. et al. (2010) Multiple vitellogenins from the Haemaphysalis longicornis tick are crucial for ovarian development. J. Insect Physiol., 56: 1587–1598. doi: 10.1016/j.jinsphys.2010.05.019

Borges, L. M. et al. (2002) The role of 2,6-dichlorophenol as sex pheromone of the tropical horse tick Anocentor nitens (Acari: Ixodidae). Exp. Appl. Acarol., 27: 223–230. doi: 10.1023/a: 1021620215416

Bowman, A. S. et al. (1996) Tick salivary prostaglandins: Presence, origin and significance. Parasitol. Today, 12: 388–396. doi: 10.1016/0169-4758(96)10061-2

Braz, G. R. et al. (1999) A missing metabolic pathway in the cattle tick Boophilus microplus. Curr. Biol., 9: 703–706. doi: 10.1016/s0960-9822(99)80312-1

Brinton, L. P. and Oliver, J. H. Jr. (1971) Fine structure of oogonial and oocyte development in Dermacentor andersoni Stiles (Acari: Ixodidae). J. Parasitol., 57, 720–747. doi: 10.2307/3277790

Budachetri, K. et al. (2017a) Catalase is a determinant of the colonization and transovarial transmission of Rickettsia parkeri in the Gulf Coast tick Amblyomma maculatum. Insect Mol. Biol., 26: 414–419. doi: 10.1111/imb.12304

Budachetri, K. et al. (2017b) Amblyomma maculatum SECIS binding protein 2 and putative selenoprotein P are indispensable for pathogen replication and tick fecundity. Insect Biochem. Mol. Biol., 88: 37–47. doi: 10.1016/j.ibmb.2017.07.006

Bullard, R. et al. (2016) Structural characterization of tick cement cones collected from in vivo and artificial membrane blood-fed Lone Star ticks (Amblyomma americanum). Ticks Tick Borne Dis., 7: 880–892. doi: 10.1016/j.ttbdis.2016.04.006

Buysse, M. et al. (2019) Tissue localization of Coxiella-like endosymbionts in three European tick species through fluorescence in situ hybridization. Ticks Tick Borne Dis., 10: 798–804. doi: 10.1016/j.ttbdis.2019.03.014

Buysse, M. et al. (2022) Ecological contacts and host specificity promote replacement of nutritional endosymbionts in Ticks. Microb. Ecol., 83: 776–788. doi: 10.1007/s00248-021-01773-0

Carr, A. L. et al. (2016) Evidence of female sex pheromones and characterization of the cuticular lipids of unfed, adult male versus female blacklegged ticks, Ixodes scapularis. Exp. Appl. Acarol., 68: 519–538. doi: 10.1007/s10493-015-0009-y

Carr, A. L. et al. (2017) Tick Hallers organ, a new paradigm for arthropod olfaction: How ticks differ from insects. Int. J. Mol. Sci., 18: 1563. doi: 10.3390/ijms18071563

Chmelar, J. et al. (2012) Tick salivary secretion as a source of antihemostatics. J. Proteomics, 75: 3842–3854. doi: 10.1016/j.jprot.2012.04.026

Cibichakravarthy, B. et al. (2022) Comparative proteomics of Coxiella like endosymbionts (CLEs) in the symbiotic organs of Rhipicephalus sanguineus ticks. Microbiol. Spectr., 10: e0167321. doi: 10.1128/spectrum.01673-21

Clara, R. O. et al. (2011) Boophilus microplus cathepsin L-like (BmCL1) cysteine protease: Specificity study using a peptide phage display library. Vet. Parasitol., 181: 291–300. doi: 10.1016/j.vetpar.2011.04.003

Coons, L. B. et al. (1982) Rhipicephalus sanguinius: Localization of vitellogenin synthesis by immunological methods and electron microscopy. Exp. Parasitol., 54: 331–339. doi: 10.1016/0014-4894(82)90042-x

Coons, L. B. et al. (1990) Fine structure of the fat body and nephrocytes in the life-stages of Dermacentor variabilis. Exp. Appl. Acarol., 8: 125–142. doi: 10.1007/BF01193387

Coons. L. B. and Roshdy, M. A. (1973) Fine structure of the salivary glands of unfed male Dermacentor variabilis (Say) (Ixodoidea: Ixodidae). J. Parasitol., 59: 900–912. doi: 10.2307/3278433

Cruz, C. E. et al. (2010) Characterization of proteinases from the midgut of Rhipicephalus (Boophilus) microplus involved in the generation of antimicrobial peptides. Parasit. Vectors, 3: 63. doi: 10.1186/1756-3305-3-63

Dai, J. et al. (2010) Tick histamine release factor is critical for Ixodes scapularis engorgement and transmission of the lyme disease agent. PLoS Pathog., 6: e1001205. doi: 10.1371/journal.ppat.1001205

Daix, V. et al. (2007) Ixodes ticks belonging to the Ixodes ricinus complex encode a family of anticomplement proteins. Insect Mol. Biol., 16: 155–166. doi: 10.1111/j.1365-2583.2006.00710.x

de Lima-Netto, S. et al. (2012) Antiviral effect of the egg wax of Amblyomma cajennense (Acari: Ixodidae). Cytotechnology, 64: 601–606. doi: 10.1007/s10616-012-9444-3

de Oliveira, P. R. et al. (2005) Morphological characterization of the ovary and oocytes vitellogenesis of the tick Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae). Exp. Parasitol., 110: 146–156. doi: 10.1016/j.exppara.2004.12.016

de Oliveira, P. R. et al. (2006) Amblyomma triste (Koch, 1844) (Acari: Ixodidae): Morphological description of the ovary and of vitellogenesis. Exp. Parasitol., 113: 179–185. doi: 10.1016/j.exppara.2006.01.012

de Oliveira, P. R. et al. (2007) Vitellogenesis in the tick Amblyomma triste (Koch, 1844) (Acari: Ixodidae): Role for pedicel cells. Vet. Parasitol., 143: 134–139. doi: 10.1016/j.vetpar.2006.08.013

Decrem, Y. et al. (2008) A family of putative metalloproteases in the salivary glands of the tick Ixodes ricinus. FEBS J., 275: 1485–1499. doi: 10.1111/j.1742-4658.2008.06308.x

Denardi, S. E. et al. (2004) Morphological characterization of the ovary and vitellogenesis dynamics in the tick Amblyomma cajennense (Acari: Ixodidae). Vet. Parasitol., 125: 379–395. doi: 10.1016/j.vetpar.2004.07.015

Denardi, S. E. et al. (2008) New morphological data on fat bodies of semi-engorged females of Amblyomma cajennense (Acari: Ixodidae). Micron, 39: 875–883. doi: 10.1016/j.micron.2007.12.002

Déruaz, M. et al. (2008) Ticks produce highly selective chemokine binding proteins with antiinflammatory activity. J. Exp. Med., 205: 2019–2031. doi: 10.1084/jem.20072689

Diehl, P. A. et al. (1982) Tick reproduction: Oogenesis and oviposition. In: Physiology of Ticks (Obenchain, F. D. and Galun, R. eds.). pp. 277–350. Pergamon Press.

Donohue, K. V. et al. (2008) Molecular characterization of the major hemelipoglycoprotein in ixodid ticks. Insect Mol. Biol., 17: 197–208. doi: 10.1111/j.1365-2583.2008.00794.x

Donohue, K. V. et al. (2009a) Heme-binding storage proteins in the Chelicerata. J. Insect Physiol., 55: 287–296. doi: 10.1016/j.jinsphys.2009.01.002

Donohue, K. V. et al. (2009b) Male engorgement factor: Role in stimulating engorgement to repletion in the ixodid tick, Dermacentor variabilis. J. Insect Physiol., 55: 909–918. doi: 10.1016/j.jinsphys.2009.05.019

dos Santos, M. F. et al. (2018) Morphodifferentiation of Genés organ in engorged Amblyomma sculptum Berlese, 1888 female ticks (Acari: Ixodidae). Ticks Tick Borne Dis., 9: 519–525. doi: 10.1016/j.ttbdis.2018.01.004

Duron, O. et al. (2018) Tick-bacteria mutualism depends on B vitamin synthesis pathways. Curr. Biol., 28: 1896–1902.e5. doi: 10.1016/j.cub.2018.04.038

Egekwu, N. et al. (2014) Transcriptome of the female synganglion of the black-legged tick Ixodes scapularis (Acari: Ixodidae) with comparison between Illumina and 454 systems. PLoS One, 9: e102667. doi: 10.1371/journal.pone.0102667

El Shoura, S. M. (1989) Effect of blood meal and mating on the genital tract ultrastructure in the female camel tick Hyalomma (Hyalomma) dromedarii (Ixodoidea: Ixodidae). Exp. Appl. Acarol., 6: 157–175. doi: 10.1007/BF01201645

Fawcett, D. W. et al. (1981a) Salivary gland of the tick vector (R. appendiculatus) of East Coast fever. I. Ultrastructure of the type III acinus. Tissue Cell, 13: 209–230. doi: 10.1016/0040-8166(81)90002-1

Fawcett, D. W. et al. (1981b) Salivary gland of the tick vector (R. appendiculatus) of East Coast fever. II. Cellular basis for fluid secretion in the type III acinus. Tissue Cell, 13: 231–253. doi: 10.1016/0040-8166(81)90003-3

Field, L. M. et al. (1999) Cloning and expression of ecto 5'-nucleotidase from the cattle tick Boophilus microplus. Insect Mol. Biol., 8: 257–266. doi: 10.1046/j.1365-2583.1999.820257.x

Fielden, L. J. et al. (2011) Underwater survival in the dog tick Dermacentor variabilis (Acari: Ixodidae). J. Insect Physiol., 57: 21–26. doi: 10.1016/j.jinsphys.2010.08.009

Francischetti, I. M. B. et al. (2002) Ixolaris, a novel recombinant tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick, Ixodes scapularis: Identification of factor X and factor Xa as scaffolds for the inhibition of factor VIIa/tissue factor complex. Blood, 99: 3602–3612. doi: 10.1182/blood-2001-12-0237

Franta, Z. et al. (2010) Dynamics of digestive proteolytic system during blood feeding of the hard tick Ixodes ricinus. Parasit. Vectors, 3: 119. doi: 10.1186/1756-3305-3-119

Franta, Z. et al. (2011) IrCL1–the haemoglobinolytic cathepsin L of the hard tick, Ixodes ricinus. Int. J. Parasitol., 41: 1253–1262. doi: 10.1016/j.ijpara.2011.06.006

Frauenschuh, A. et al. (2007) Molecular cloning and characterization of a highly selective chemokine-binding protein from the tick Rhipicephalus sanguineus. J. Biol. Chem., 282: 27250–27258. doi: 10.1074/jbc.M704706200

藤崎幸蔵 (1988) マダニの生物学─マダニの出現と進化. 畜産の研究. 42: 9–12.

Fujisaki, K. et al. (1976) Comparative observations on some bionomics of Japanese ixodid ticks under laboratory cultural conditions. Natl. Inst. Anim. Health Q. (Tokyo), 16: 122–128.

Fukumoto, S. et al. (2006) Tick troponin I-like molecule is a potent inhibitor for angiogenesis. Microvasc. Res., 71: 218–221. doi: 10.1016/j.mvr.2006.02.003

Galay, R. L. et al. (2015) Iron metabolism in hard ticks (Acari: Ixodidae): The antidote to their toxic diet. Parasitol. Int., 64: 182–189. doi: 10.1016/j.parint.2014.12.005

Gerhart, J. G. et al. (2018) Multiple acquisitions of pathogen-derived Francisella endosymbionts in soft ticks. Genome Biol. Evol., 10: 607–615. doi: 10.1093/gbe/evy021

Graça-Souza, A. V. et al. (2006) Adaptations against heme toxicity in blood-feeding arthropods. Insect Biochem. Mol. Biol., 36: 322–335. doi: 10.1016/j.ibmb.2006.01.009

Gudderra, N. P. et al. (2001) Developmental profile, isolation, and biochemical characterization of a novel lipoglycoheme-carrier protein from the American dog tick, Dermacentor variabilis (Acari: Ixodidae) and observations on a similar protein in the soft tick, Ornithodoros parkeri (Acari: Argasidae). Insect Biochem. Mol. Biol., 31: 299–311. doi: 10.1016/s0965-1748(00)00122-3

Guglielmone, A. A. et al. (2010) The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: A list of valid species names. Zootaxa, 2528: 1–28. doi: 10.11646/zootaxa.2528.1.1

Guo, X. and Kaufman, W. R. (2008) Identification of two genes essential for sperm development in the male tick Amblyomma hebraeum Koch (Acari: Ixodidae). Insect Biochem. Mol. Biol., 38: 721–729. doi: 10.1016/j.ibmb.2008.04.004

Hamdy, B. H. (1977) Biochemical and physiological studies of certain ticks (Ixodoidea). Excretion during ixodid feeding. J. Med. Entomol., 14: 15–18. doi: 10.1093/jmedent/14.1.15

Hamilton, J. G. C. et al. (1994) Evidence for a mounting sex pheromone in the brown ear tick Rhipicephalus appendiculatus, Neuman 1901 (Acari: Ixodidae). Exp. Appl. Acarol., 18: 331–338. doi: 10.1007/BF00116314

Hatta, T. et al. (2006) Identification and characterisation of a leucine aminopeptidase from the hard tick Haemaphysalis longicornis. Int. J. Parasitol., 36: 1123–1132. doi: 10.1016/j.ijpara.2006.05.010

Hatta, T. et al. (2009) Leucine aminopeptidase in the ixodid tick Haemaphysalis longicornis: Endogenous expression profiles in midgut. J. Vet. Med Sci., 71: 589–594. doi: 10.1292/jvms.71.589

Hatta, T. et al. (2010) Leucine aminopeptidase, HlLAP, from the ixodid tick Haemaphysalis longicornis, plays vital roles in the development of oocytes. Parasitol. Int., 59: 286–289. doi: 10.1016/j.parint.2010.03.001

Hernandez, E. P. et al. (2019) The case for oxidative stress molecule involvement in the tick-pathogen interactions -an omics approach. Dev. Comp. Immunol., 100: 103409. doi: 10.1016/j.dci.2019.103409

Hess, E. and De Castro, J. J. (1986) Field tests of the response of female Amblyomma variegatum (Acari: Ixodidae) to the synthetic aggregation-attachment pheromone and its components. Exp. Appl. Acarol., 2: 249–255. doi: 10.1007/BF01193957

Hidano, A. et al. (2014) Suppressive effects of neutrophil by Salp16-like salivary gland proteins from Ixodes persulcatus Schulze tick. Insect Mol. Biol., 23: 466–474. doi: 10.1111/imb.12101

Holmes, S. P. et al. (2008) An aquaporin-like protein from the ovaries and gut of American dog tick (Acari: Ixodidae). J. Med. Entomol., 45: 68–74. doi: 10.1603/0022-2585(2008)45[68: aapfto]2.0.co;2

Horn, M. et al. (2009) Hemoglobin digestion in blood-feeding ticks: Mapping a multipeptidase pathway by functional proteomics. Chem. Biol., 16: 1053–1063. doi: 10.1016/j.chembiol.2009.09.009

Islam, M. K. et al. (2009) The Kunitz-like modulatory protein haemangin is vital for hard tick blood-feeding success. PLoS Pathog., 5: e1000497. doi: 10.1371/journal.ppat.1000497

Jablonka, W. et al. (2015) Identification and mechanistic analysis of a novel tick-derived inhibitor of thrombin. PLoS One, 10: e0133991. doi: 10.1371/journal.pone.0133991

James, A. M. et al. (1997) Vitellogenin and ecdysteroid titers in Ixodes scapularis during vitellogenesis. J. Parasitol., 83: 559–563. doi: 10.2307/3284224

Jaworski, D. C. et al. (1990) Amblyomma americanum: Identification of tick salivary gland antigens from unfed and early feeding females with comparisons to Ixodes dammini and Dermacentor variabilis. Exp. Parasitol., 70: 217–226. doi: 10.1016/0014-4894(90)90102-I

Jaworski, D. C. et al. (2001) Identification and characterization of a homologue of the pro-inflammatory cytokine Macrophage Migration Inhibitory Factor in the tick, Amblyomma americanum. Insect Mol. Biol., 10: 323–331. doi: 10.1046/j.0962-1075.2001.00271.x

Josek, T. et al. (2018) A foreleg transcriptome for Ixodes scapularis ticks: Candidates for chemoreceptors and binding proteins that might be expressed in the sensory Hallers organ. Ticks Tick Borne Dis., 9: 1317–1327. doi: 10.1016/j.ttbdis.2018.05.013

Kagemann, J. and Clay, K. (2013) Effects of infection by Arsenophonus and Rickettsia bacteria on the locomotive ability of the ticks Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis. J. Med. Entomol., 50: 155–162. doi: 10.1603/me12086

Kakuda, H. et al. (1995) Effects of feeding and copulation on ultrastructural changes of the tubular glands of Gené's organ in female Haemaphysalis longicornis (Acari: Ixodidae). J. Acarol. Soc. Jpn., 4: 1–13. doi: 10.2300/acari.4.1

Kaltenrieder, M. et al. (1989) Spectral sensitivity, absolute threshold, and visual field of two tick species, Hyalomma dromedarii and Amblyomma variegatum. J. Comp. Physiol. A, 165: 155–164. doi: 10.1007/BF00619190

Kariu, T. et al. (2013) A chitin deacetylase-like protein is a predominant constituent of tick peritrophic membrane that influences the persistence of Lyme disease pathogens within the vector. PLoS One, 8: e78376. doi: 10.1371/journal.pone.0078376

Kawano, S. et al. (2011) Cloning and characterization of the autophagy-related gene 6 from the hard tick, Haemaphysalis longicornis. Parasitol. Res., 109: 1341–1349. doi: 10.1007/s00436-011-2429-x

Kiszewski, A. E. et al. (2001) Mating strategies and spermiogenesis in ixodid ticks. Annu. Rev. Entomol., 46: 167–182. doi: 10.1146/annurev.ento.46.1.167

北岡茂男 (1971)「家畜衛生指導事業研修用テキストII-7-5 マダニ類分類・生理・生態・家畜との関係」. 日本獣医師会.

Kitsou, C. et al. (2021) Tick gut barriers impacting tick-microbe interactions and pathogen persistence. Mol. Microbiol., 116: 1241–1248. doi: 10.1111/mmi.14822

Kopp, K. and Gothe, R. (1995) Hyalomma truncatum (AcariIxodidae): Evidence for the inability of adult ticks to discriminate between colours. Exp. Appl. Acarol., 19: 155–161. doi: 10.1007/BF00046286

Kotsyfakis, M. et al. (2006) Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. J. Biol. Chem., 281: 26298–26307. doi: 10.1074/jbc.M513010200

Kramer, C. et al. (2008) Dermacentor variabilis: Regulation of fibroblast migration by tick salivary gland extract and saliva. Exp. Parasitol., 119: 391–397. doi: 10.1016/j.exppara.2008.04.005

Kumar, D. et al. (2016) Assessment of tick antioxidant responses to exogenous oxidative stressors and insight into the role of catalase in the reproductive fitness of the Gulf Coast tick, Amblyomma maculatum. Insect Mol. Biol., 25: 283–294. doi: 10.1111/imb.12218

Kumar, S. and Bandyopadhyay, U. (2005) Free heme toxicity and its detoxification systems in human. Toxicol. Lett., 157: 175–188. doi: 10.1016/j.toxlet.2005.03.004

Kume, A. et al. (2012) RNAi of the translation inhibition gene 4E-BP identified from the hard tick, Haemaphysalis longicornis, affects lipid storage during the off-host starvation period of ticks. Parasitol. Res., 111: 889–896. doi: 10.1007/s00436-012-2915-9

Kuniyori, M. et al. (2022) Vitellogenin-2 accumulation in the fat body and hemolymph of Babesia-infected Haemaphysalis longicornis ticks. Front. Cell. Infect. Microbiol., 12: 908142. doi: 10.3389/fcimb.2022.908142

Kusakisako, K. et al. (2016) Functional analysis of recombinant 2-Cys peroxiredoxin from the hard tick Haemaphysalis longicornis. Insect Mol. Biol., 25: 16–23. doi: 10.1111/imb.12193

Kusakisako, K. et al. (2018) The multiple roles of peroxiredoxins in tick blood feeding. Exp. Appl. Acarol., 75: 269–280. doi: 10.1007/s10493-018-0273-8

Lara, F. A. et al. (2005) Tracing heme in a living cell: Hemoglobin degradation and heme traffic in digest cells of the cattle tick Boophilus microplus. J. Exp. Biol., 208: 3093–3101. doi: 10.1242/jeb.01749

Lees, K. and Bowman, A. S. (2007) Tick neurobiology: Recent advances and the post-genomic era. Invert. Neurosci., 7: 183–198. doi: 10.1007/s10158-007-0060-4

Lusby, W. R. et al. (1991) Comparison of known and suspected pheromonal constituents in males of the African ticks, Amblyomma hebraeum Koch and Amblyomma variegatum (Fabricius). Exp. Appl. Acarol., 13: 143–152. doi: 10.1007/BF01193665

Ma, H. et al. (2023) The diurnal salivary glands transcriptome of Dermacentor nuttalli from the first four days of blood feeding. Ticks Tick Borne Dis., 14: 102178. doi: 10.1016/j.ttbdis.2023.102178

Mans, B. J. and Ribeiro, J. M. (2008) Function, mechanism and evolution of the moubatin-clade of soft tick lipocalins. Insect Biochem. Mol. Biol., 38: 841–852. doi: 10.1016/j.ibmb.2008.06.007

Mans, B. J. et al. (2002) Savignygrin, a platelet aggregation inhibitor from the soft tick Ornithodoros savignyi, presents the RGD integrin recognition motif on the Kunitz-BPTI fold. J. Biol. Chem., 277: 21371–21378. doi: 10.1074/jbc.M112060200

Mateos-Hernández, L. et al. (2021) Enlisting the Ixodes scapularis embryonic ISE6 cell line to investigate the neuronal basis of tick—pathogen interactions. Pathogens, 10: 70. doi: 10.3390/pathogens10010070

Matsuo, T. et al. (2013) Reproduction in a Metastriata tick, Haemaphysalis longicornis (Acari: Ixodidae). J. Acarol. Soc. Jpn., 22: 1–23. doi: 10.2300/acari.22.1

Maya-Monteiro, C. M. et al. (2000) HeLp, a heme lipoprotein from the hemolymph of the cattle tick, Boophilus microplus. J. Biol. Chem., 275: 36584–36589. doi: 10.1074/jbc.M007344200

Maya-Monteiro, C. M. et al. (2004) HeLp, a heme-transporting lipoprotein with an antioxidant role. Insect Biochem. Mol. Biol., 34: 81–88. doi: 10.1016/j.ibmb.2003.09.005

Mihara, R. et al. (2018) The development of oocytes in the ovary of a parthenogenetic tick, Haemaphysalis longicornis. Parasitol. Int., 67: 465–471. doi: 10.1016/j.parint.2018.04.006

Mitchell, R. D. III et al. (2019) Vitellogenin receptor as a target for tick control: A mini-review. Front. Physiol., 10: 618. doi: 10.3389/fphys.2019.00618

Miyoshi, T. et al. (2004) Cloning and molecular characterization of a cubilin-related serine proteinase from the hard tick Haemaphysalis longicornis. Insect Biochem. Mol. Biol., 34: 799–808. doi: 10.1016/j.ibmb.2004.04.004

Miyoshi, T. et al. (2007) Molecular and reverse genetic characterization of serine proteinase-induced hemolysis in the midgut of the ixodid tick Haemaphysalis longicornis. J. Insect Physiol., 53: 195–203. doi: 10.1016/j.jinsphys.2006.12.001

Miyoshi, T. et al. (2008) A set of serine proteinase paralogs are required for blood-digestion in the ixodid tick Haemaphysalis longicornis. Parasitol. Int., 57: 499–505. doi: 10.1016/j.parint.2008.08.003

Motobu, M. et al. (2007) Molecular characterization of a blood-induced serine carboxypeptidase from the ixodid tick Haemaphysalis longicornis. FEBS J., 274: 3299–3312. doi: 10.1111/j.1742-4658.2007.05852.x

Narasimhan, S. et al. (2007) A tick antioxidant facilitates the Lyme disease agents successful migration from the mammalian host to the arthropod vector. Cell Host Microbe, 2: 7–18. doi: 10.1016/j.chom.2007.06.001

Needham, G. R. and Teel, P. D. (1991) Off-host physiological ecology of ixodid ticks. Annu. Rev. Entomol., 36: 659–681. doi: 10.1146/annurev.en.36.010191.003303

Neupert, S. et al. (2005) Identification of tick periviscerokinin, the first neurohormone of Ixodidae: Single cell analysis by means of MALDI-TOF/TOF mass spectrometry. Biochem. Biophys. Res. Commun., 338: 1860–1864. doi: 10.1016/j.bbrc.2005.10.165

Neupert, S. et al. (2009) The neuropeptidomics of Ixodes scapularis synganglion. J. Proteomics., 72, 1040–1045. doi: 10.1016/j.jprot.2009.06.007

Norval, R. A. et al. (1992a) Responses of the ticks Amblyomma hebraeum and A. variegatum to known or potential components of the aggregation-attachment pheromone. IV. Attachment stimulation of nymphs. Exp. Appl. Acarol., 16: 247–253. doi: 10.1007/BF01193807

Norval, R. A. et al. (1992b) Responses of the ticks Amblyomma hebraeum and A. variegatum to known or potential components of the aggregation-attachment pheromone. III. Aggregation. Exp. Appl. Acarol., 16: 237–245. doi: 10.1007/BF01193806

Nunn, M. A. et al. (2005) Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. J. Immunol., 174: 2084–2091. doi: 10.4049/jimmunol.174.4.2084

Obenchain, F. D. and Galun, R. eds. (1982) Physiology of Ticks: Current Themes in Tropical Science Volume 1. Pergamon Press. doi: 10.1016/C2013-0-03261-6

OHagan, J. E. (1974) Boophilus microplus: Digestion of hemoglobins by the engorged female tick. Exp. Parasitol., 35: 110–118. doi: 10.1016/0014-4894(74)90013-7

Oliver, J. H. Jr. and Dotson, E. M. (1993) Hormonal control of molting and reproduction in ticks. Amer. Zool., 33: 384–396. doi: 10.1093/icb/33.3.384

Osterhoff, D. R. and Gothe R. (1966) The use of red cell antigens for timing break-down of erythrocytes during digestion in Ornithodoros savignyi (Audouin, 1827). Parasitology, 56: 613–618. doi: 10.1017/S0031182000071626

Perner, J. et al. (2021) Haem-responsive gene transporter enables mobilization of host haem in ticks. Open Biol., 11: 210048. doi: 10.1098/rsob.210048

Poole, N. M. et al. (2013) Prostaglandin E2 in tick saliva regulates macrophage cell migration and cytokine profile. Parasit. Vectors, 6: 261. doi: 10.1186/1756-3305-6-261

Preston, S. G. et al. (2013) Novel immunomodulators from hard ticks selectively reprogramme human dendritic cell responses. PLoS Pathog., 9: e1003450. doi: 10.1371/journal.ppat.1003450

Ramamoorthi, N. et al. (2005) The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature, 436: 573–577. doi: 10.1038/nature03812

Renard, G. et al. (2000) Cloning and functional expression of a Boophilus microplus cathepsin L-like enzyme. Insect Biochem. Mol. Biol., 30: 1017–1026. doi: 10.1016/S0965-1748(00)00070-9

Renard, G. et al. (2002) Expression and immunolocalization of a Boophilus microplus cathepsin L-like enzyme. Insect Mol. Biol., 11: 325–328. doi: 10.1046/j.1365-2583.2002.00342.x

Reyes, J. et al. (2020) Blood digestion by trypsin-like serine proteases in the replete lyme disease vector tick, Ixodes scapularis. Insects, 11: 201. doi: 10.3390/insects11030201

Ribeiro, J. M. and Mather, T. N. (1998) Ixodes scapularis: Salivary kininase activity is a metallo dipeptidyl carboxypeptidase. Exp. Parasitol., 89: 213–221. doi: 10.1006/expr.1998.4296

Ribeiro, J. M. et al. (1985) Antihemostatic, antiinflammatory, and immunosuppressive properties of the saliva of a tick, Ixodes dammini. J. Exp. Med., 161: 332–344. doi: 10.1084/jem.161.2.332

Robinson, M. W. et al. (2010) Peroxiredoxin: A central player in immune modulation. Parasite Immunol., 32: 305–313. doi: 10.1111/j.1365-3024.2010.01201.x

Rosell, R. and Coons, L. B. (1992) The role of the fat body, midgut and ovary in vitellogenin production and vitellogenesis in the female tick, Dermacentor variabilis. Int. J. Parasitol., 22: 341–349. doi: 10.1016/s0020-7519(05)80012-8

Sachetto-Martins, G. et al. (2000) Plant glycine-rich proteins: A family or just proteins with a common motif? Biochim. Biophys. Acta, 1492: 1–14. doi: 10.1016/S0167-4781(00)00064-6

Saito, K. C. et al. (2005) Morphological, histological, and ultrastructural studies of the ovary of the cattle-tick Boophilus microplus (Canestrini, 1887) (Acari: Ixodidae). Vet. Parasitol., 129: 299–311. doi: 10.1016/j.vetpar.2004.09.020

Sanches, G. S. et al. (2010) Ovary and oocyte maturation of the tick Amblyomma brasiliense Aragão, 1908 (Acari: Ixodidae). Micron, 41: 84–89. doi: 10.1016/j.micron.2009.08.008

Sanches, G. S. et al. (2012) Morphological records of oocyte maturation in the parthenogenetic tick Amblyomma rotundatum Koch, 1844 (Acari: Ixodidae). Ticks Tick Borne Dis., 3: 59–64. doi: 10.1016/j.ttbdis.2011.11.001

Schriefer, M. E. et al. (1987) Evidence of ecdysteroid production by tick (Acari: Ixodidae) fat-body tissues in vitro. J. Med. Entomol., 24: 295–302. doi: 10.1093/jmedent/24.3.295

Scott, R. C. et al. (2004) Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev. Cell, 7: 167–178. doi: 10.1016/j.devcel.2004.07.009

Sieberz, J. and Gothe. R. (2000) Modus operandi of oviposition in Dermacentor reticulatus (Acari: Ixodidae). Exp. Appl. Acarol., 24: 63–76. doi: 10.1023/A: 1006351019078

Šimo, L. and Park, Y. (2014) Neuropeptidergic control of the hindgut in the black-legged tick Ixodes scapularis. Int. J. Parasitol., 44: 819–826. doi: 10.1016/j.ijpara.2014.06.007

Šimo, L. et al. (2017) The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front. Cell. Infect. Microbiol., 7: 281. doi: 10.3389/fcimb.2017.00281

Smith, T. A. et al. (2015) A Coxiella-like endosymbiont is a potential vitamin source for the Lone Star tick. Genome Biol. Evol., 7: 831–838. doi: 10.1093/gbe/evv016

Sojka, D. et al. (2007) IrAE: An asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus. Int. J. Parasitol., 37: 713–724. doi: 10.1016/j.ijpara.2006.12.020

Sojka, D. et al. (2008) Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasit. Vectors, 1: 7. doi: 10.1186/1756-3305-1-7

Sojka, D. et al. (2012) Characterization of gut-associated cathepsin D hemoglobinase from tick Ixodes ricinus (IrCD1). J. Biol. Chem., 287: 21152–21163. doi: 10.1074/jbc.M112.347922

Sojka, D. et al. (2013) New insights into the machinery of blood digestion by ticks. Trends Parasitol., 29: 276–285. doi: 10.1016/j.pt.2013.04.002

Sonenshine, D. E. (1985) Pheromones and other semiochemicals of the acari. Annu. Rev. Entomol., 30: 1–28. doi: 10.1146/annurev.en.30.010185.000245

Sonenshine, D. E. (1991) Biology of Ticks volume 1. Oxford University Press.

Sonenshine, D. E. (1991) The midgut. In: Biology of Ticks. Volume 1. pp. 159–188. Oxford University Press.

Sonenshine, D. E. (2004) Pheromones and other semiochemicals of ticks and their use in tick control. Parasitology, 129: S405–425. doi: 10.1017/s003118200400486x

Sonenshine, D. E. (2006) Tick pheromones and their use in tick control. Annu. Rev. Entomol., 51: 557–580. doi: 10.1146/annurev.ento.51.110104.151150

Sonenshine, D. E. and Roe, R. M. eds. (2014) Biology of Ticks volume 1. 2nd ed. Oxford University Press.

Sonenshine, D. E. and Šimo, L. (2022) Chapter 12: Biology and molecular biology of Ixodes scapularis. In: Lyme Disease and Relapsing Fever Spirochetes: Genomics, Molecular Biology, Host Interactions and Disease Pathogenesis (Radolf, J. D. and Sauels, D. S. eds.). pp. 339–368, Caister Academic Press.

Sonenshine, D. E. et al. (1984) Evidence of the role of the cheliceral digits in the perception of genital sex pheromones during mating in the American dog tick, Dermacentor variabilis (Acari: Ixodidae). J. Med. Entomol., 21: 296–306. doi: 10.1093/jmedent/21.3.296

Sonenshine, D. E. et al. (2003) Chemical composition of some components of the arrestment pheromone of the black-legged tick, Ixodes scapularis (Acari: Ixodidae) and their use in tick control. J. Med. Entomol., 40: 849–859. doi: 10.1603/0022-2585-40.6.849

Suleiman, S. A. (1973) Comparative studies of gametogenesis and sperm-egg interactions in the ticks, Dermacentor variabilis (Say) and Dermacentor andersoni (Stiles) (Ixodoidea: Acari). Iowa State University Digital Repository, Retrospective Theses and Dissertations, 5966. doi: 10.31274/rtd-180813-4921

Tatchell, R. J. (1964) Digestion in the Tick, Argas persicus, Oken. Parasitology, 54: 423–440. doi: 10.1017/S0031182000082470

Tatchell, R. J. and Moorhouse, D. E. (1968) The feeding processes of the cattle tick Boophilus microplus (Canestrini). II. The sequence of host-tissue changes. Parasitology, 58: 441–459. doi: 10.1017/S0031182000069468

Tatchell, R. J. and Moorhouse, D. E. (1970) Neutrophils: Their role in the formation of a tick feeding lesion. Science, 167: 1002–1003. doi: 10.1126/science.167.3920.1002

Thompson, D. M. et al. (2005) In vivo role of 20-hydroxyecdysone in the regulation of the vitellogenin mRNA and egg development in the American dog tick, Dermacentor variabilis (Say). J. Insect Physiol., 51: 1105–1116. doi: 10.1016/j.jinsphys.2005.05.011

Till, W. M. , 藤崎幸蔵訳 (1982) Rhipicephalus appendiculatus Neumannの解剖と組織 (1). 動薬研究, 30: 2–25.

Toh, S. Q. et al. (2010) Heme and blood-feeding parasites: Friends or foes? Parasit. Vectors, 3: 108. doi: 10.1186/1756-3305-3-108

Tokareva, O. et al. (2014) Structure–function–property–design interplay in biopolymers: Spider silk. Acta Biomater., 10: 1612–1626. doi: 10.1016/j.actbio.2013.08.020

Tsuji, N. et al. (2001) Molecular characterization of a peroxiredoxin from the hard tick Haemaphysalis longicornis. Insect Mol. Biol., 10: 121–129. doi: 10.1046/j.1365-2583.2001.00246.x

Tsuji, N. et al. (2008) A cysteine protease is critical for Babesia spp. transmission in Haemaphysalis ticks. PLoS Pathog., 4: e1000062. doi: 10.1371/journal.ppat.1000062

角田 隆 (1995) マダニ類のフェロモン. 千葉衛研報告, 19: 15–27.

Umemiya, R. et al. (2007a) Cloning and characterization of an autophagy-related gene, ATG12, from the three-host tick Haemaphysalis longicornis. Insect Biochem. Mol. Biol., 37: 975–984. doi: 10.1016/j.ibmb.2007.05.006

Umemiya, R. et al. (2007b) Haemaphysalis longicornis: Molecular characterization of a homologue of the macrophage migration inhibitory factor from the partially fed ticks. Exp. Parasitol., 115: 135–142. doi: 10.1016/j.exppara.2006.07.006

Umemiya-Shirafuji, R. et al. (2010) Increased expression of ATG genes during nonfeeding periods in the tick Haemaphysalis longicornis. Autophagy, 6: 473–481. doi: 10.4161/auto.6.4.11668

Umemiya-Shirafuji, R. et al. (2012a) Akt is an essential player in regulating cell/organ growth at the adult stage in the hard tick Haemaphysalis longicornis. Insect Biochem. Mol. Biol., 42: 164–173. doi: 10.1016/j.ibmb.2011.12.001

Umemiya-Shirafuji, R. et al. (2012b) Target of rapamycin (TOR) controls vitellogenesis via activation of the S6 kinase in the fat body of the tick, Haemaphysalis longicornis. Int. J. Parasitol., 42: 991–998. doi: 10.1016/j.ijpara.2012.08.002

Umemiya-Shirafuji, R. et al. (2017) Transovarial persistence of Babesia ovata DNA in a hard tick, Haemaphysalis longicornis, in a semi-artificial mouse skin membrane feeding system. Acta Parasitol., 62: 836–841. doi: 10.1515/ap-2017-0100

Umemiya-Shirafuji, R. et al. (2019) Intracellular localization of vitellogenin receptor mRNA and protein during oogenesis of a parthenogenetic tick, Haemaphysalis longicornis. Parasit. Vectors, 12: 205. doi: 10.1186/s13071-019-3469-9

Valenzuela, J. G. et al. (2000) Purification, cloning, and expression of a novel salivary anticomplement protein from the tick, Ixodes scapularis. J. Biol. Chem., 275: 18717–18723. doi: 10.1074/jbc.M001486200

van de Locht, A. et al. (1996) The ornithodorin-thrombin crystal structure, a key to the TAP enigma? EMBO J., 15: 60116017.

Vudriko, P. et al. (2017) Genetic mutations in sodium channel domain II and carboxylesterase genes associated with phenotypic resistance against synthetic pyrethroids by Rhipicephalus (Boophilus) decoloratus ticks in Uganda. Pestic. Biochem. Physiol., 143: 181–190. doi: 10.1016/j.pestbp.2017.07.009

Vudriko, P. et al. (2018) C190A knockdown mutation in sodium channel domain II of pyrethroid-resistant Rhipicephalus appendiculatus. Ticks Tick Borne Dis., 9: 1590–1593. doi: 10.1016/j.ttbdis.2018.08.007

Waldman, J. et al. (2022) Neuropeptides in Rhipicephalus microplus and other hard ticks. Ticks Tick Borne Dis., 13: 101910. doi: 10.1016/j.ttbdis.2022.101910

Waldman, J. et al. (2023) Putative target sites in synganglion for novel ixodid tick control strategies. Ticks Tick Borne Dis., 14: 102123. doi: 10.1016/j.ttbdis.2023.102123

Walker, A. R. et al. (1985) Structural and histochemical changes in the salivary glands of Rhipicephalus appendiculatus during feeding. Int. J. Parasitol., 15: 81–100. doi: 10.1016/0020-7519(85)90106-7

Walker, A. R. et al. (1996) Integument and sensillum auriforme of the opisthosoma of Rhipicephalus appendiculatus (Acari: Ixodidae). J. Med. Entomol., 33: 734–742. doi: 10.1093/jmedent/33.5.734

Wang, H. et al. (2001) Feeding aggregation of the tick Rhipicephalus appendiculatus (Ixodidae): Benefits and costs in the contest with host responses. Parasitology, 123: 447–453. doi: 10.1017/s0031182001008654

Wang, X. et al. (1996) Variabilin, a novel RGD-containing antagonist of glycoprotein IIb-IIIa and platelet aggregation inhibitor from the hard tick Dermacentor variabilis. J. Biol. Chem., 271: 17785–17790. doi: 10.1074/jbc.271.30.17785

Waxman, L. and Connolly, T. M. (1993) Isolation of an inhibitor selective for collagen-stimulated platelet aggregation from the soft tick Ornithodoros moubata. J. Biol. Chem., 268: 5445–5449. doi: 10.1016/S0021-9258(18)53341-X

Waxman, L. et al. (1990) Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa. Science, 248: 593–596. doi: 10.1126/science.2333510

Weiss, B. L. and Kaufman, W. R. (2004) Two feeding-induced proteins from the male gonad trigger engorgement of the female tick Amblyomma hebraeum. Proc. Natl. Acad. Sci. USA, 101: 5874–5879. doi: 10.1073/pnas.0307529101

Whiten, S. R. et al. (2017) Ironing out the details: Exploring the role of iron and heme in blood-sucking arthropods. Front. Physiol., 8: 1134. doi: 10.3389/fphys.2017.01134

Wulff, J. P. et al. (2022) Periviscerokinin (Cap2bCAPA) receptor silencing in females of Rhipicephalus microplus reduces survival, weight and reproductive output. Parasit. Vectors, 15: 359. doi: 10.1186/s13071-022-05457-7

Xavier, M. A. et al. (2019) Tick Genés organ engagement in lipid metabolism revealed by a combined transcriptomic and proteomic approach. Ticks Tick Borne Dis., 10: 787–797. doi: 10.1016/j.ttbdis.2019.03.013

Yamaji, K. et al. (2009) Hemoglobinase activity of a cysteine protease from the ixodid tick Haemaphysalis longicornis. Parasitol. Int., 58: 232–237. doi: 10.1016/j.parint.2009.05.003

Yano, Y. et al. (1989) Ultrastructure of oogenesis in the adult cattle tick, Haemaphysalis longicornis. J. Fac. Agric. Kyushu Univ., 34: 53–67. doi: 10.5109/23888

Yoder, J. A. et al. (2008) Failure by engorged stages of the lone star tick, Amblyomma americanum, to react to assembly pheromone, guanine and uric acid. Med. Vet. Entomol., 22: 135–139. doi: 10.1111/j.1365-2915.2008.00729.x

Yoder, J. A. et al. (2013) Off-host aggregation in the non-fed, female brown dog tick, Rhipicephalus sanguineus (Latreille), is induced by tick excreta and enhanced by low relative humidity. Med. Vet. Entomol., 27: 209–215. doi: 10.1111/j.1365-2915.2012.01040.x

Yu, D. et al. (2006) A tick B-cell inhibitory protein from salivary glands of the hard tick, Hyalomma asiaticum asiaticum. Biochem. Biophys. Res. Commun., 343: 585–590. doi: 10.1016/j.bbrc.2006.02.188

Yunker, C. E. (1992) Olfactory responses of adult Amblyomma hebraeum and A. variegatum (Acari: Ixodidae) to attractant chemicals in laboratory tests. Exp. Appl. Acarol., 13(4): 295–301. doi: 10.1007/BF01195086

Zhong, Z. et al. (2021) Symbiont-regulated serotonin biosynthesis modulates tick feeding activity. Cell Host Microbe, 29: 1545–1557.e4. doi: 10.1016/j.chom.2021.08.011

Zhu, X. X. et al. (1991) Epidermis as the source of ecdysone in an argasid tick. Proc. Natl. Acad. Sci. USA, 88: 3744–3747. doi: 10.1073/pnas.88.9.3744

 

第4章 生活史

Anderson, K. et al. (2012) Tick infestation patterns in free ranging African buffalo (Syncercus caffer): Effects of host innate immunity and niche segregation among tick species. Int. J. Parasitol. Parasites Wildl., 2: 1–9. doi: 10.1016/j.ijppaw.2012.11.002

Apanaskevich, D. A. et al. (2010) The genus Hyalomma Koch, 1844. X. Redescription of all parasitic stages of H. (Euhyalomma) scupense Schulze, 1919 (= H. detritum Schulze) (Acari: Ixodidae) and notes on its biology. Folia Parasitol. (Praha), 57: 69–78. doi: 10.14411/fp.2010.009

浅沼 靖・福田 進 (1957) 青森県蕪島のウミネコに寄生するIxodes signatusの生活史. 衛生動物, 8: 147–159. doi: 10.7601/mez.8.147

Balashov, Yu. S. (1972) Bloodsucking ticks (Ixodoidea): Vectors of diseases of man and animals. Misc. Publ. Entomol. Soc. Am., 8: 163–376.

Barker, S. C. and Murrell, A. (2004) Systematics and evolution of ticks with a list of valid genus and species names. Parasitology, 129: S15–36. doi: 10.1017/s0031182004005207

Barker, S. C. and Walker, A. R. (2014) Ticks of Australia. The species that infest domestic animals and humans. Zootaxa, 3816: 1–144. doi: 10.11646/zootaxa.3816.1.1

Belozerov, V. N. (1982) Diapause and biological rhythms in ticks. In: Physiology of Ticks (Obenchain, F. D. and Galun, R. eds.). pp. 469–500, Pergamon Press.

Bianchi, M. W. and Barré, N. (2003) Factors affecting the detachment rhythm of engorged Boophilus microplus female ticks (Acari: Ixodidae) from Charolais steers in New Caledonia. Vet. Parasitol., 112: 325–336. doi: 10.1016/s0304-4017(02)00271-6

Chen, X. et al. (2014) Multiple lines of evidence on the genetic relatedness of the parthenogenetic and bisexual Haemaphysalis longicornis (Acari: Ixodidae). Infect. Genet. Evol., 21: 308–314. doi: 10.1016/j.meegid.2013.12.002

近木英哉 (1976) フタトゲチマダニの生態学的研究. 島根大農学部昆虫管理学研究室特報, 1: 1–76, 6 pls.

Chinzei, Y. et al. (1992) Vitellogenesis induction by synganglion factor in adult female tick, Ornithodoros moubata (Acari: Argasidae). J. Acarol. Soc. Jpn. 1: 15–26. doi: 10.2300/acari.1.15

Cutullé, C. et al. (2010) Multiple paternity in Rhipicephalus (Boophilus) microplus confirmed by microsatellite analysis. Exp. Appl. Acarol., 50: 51–58. doi: 10.1007/s10493-009-9298-3

Dantas-Torres, F. et al. (2012) Starvation and overwinter do not affect the reproductive fitness of Rhipicephalus sanguineus. Vet. Parasitol., 185: 260–264. doi: 10.1016/j.vetpar.2011.10.005

de Meeûs, T. et al. (2004) Non-Mendelian transmission of alleles at microsatellite loci: An example in Ixodes ricinus, the vector of Lyme disease. Int. J. Parasitol., 34: 943–950. doi: 10.1016/j.ijpara.2004.04.006

Diehl, P. A. (1982) Correlations between ecdysteroid titers and integument structure in nymphs of the tick Amblyomma hebraeum Koch (Acarina: Ixodidae). Rev. Suisse Zool., 89: 859–868.

Doi, K. et al. (2021) Mapping the Potential Distribution of Ticks in the Western Kanto Region, Japan: Predictions Based on Land-Use, Climate, and Wildlife. Insects, 12: 1095. doi: 10.3390/INSECTS12121095

Dotson, E. M. et al. (1995) Ecdysteroid titre and metabolism and cuticle deposition during embryogenesis of the ixodid tick Amblyomma hebraeum (Koch). Comp. Biochem. Physiol. B Biochem. Mol. Biol., 110: 155–166. doi: 10.1016/0305-0491(94)00140-p

Drew, M. L. and Samuel, W. M. (1989) Instar development and disengagement rate of engorged female winter ticks, Dermacentor albipictus (Acari: Ixodidae), following single- and trickle-exposure of moose (Alces alces). Exp. Appl. Acarol., 6: 189–196. doi: 10.1007/BF01193979

England, S. J. et al. (2023) Static electricity passively attracts ticks onto hosts. Curr. Biol., 33: 3041–3047.e4. doi: 10.1016/j.cub.2023.06.021

Feldman-Muhsam, B. and Borut, S. (1971) Copulation in ixodid ticks. J. Parasitol., 57: 630–634. doi: 10.2307/3277930

Feldman-Muhsam, B. and Havivi, Y. (1963) On Adlerocystis n. gen. (Phycomycetes) a symbiote of Ornithodoros ticks. Parasitology, 53: 183–188. doi: 10.1017/S003118200007267X

Friesen, K. J. and Kaufman, W. R. (2002) Quantification of vitellogenesis and its control by 20-hydroxyecdysone in the ixodid tick, Amblyomma hebraeum. J. Insect Physiol., 48: 773–782. doi: 10.1016/s0022-1910(02)00107-5

藤井 毅 (2019) ガの性フェロモンとなった長鎖不飽和炭化水素のはなし. 蚕糸・昆虫バイオテック, 88: 97–107. doi: 10.11416/konchubiotec.88.2_097

Fujimoto, K. (1998) Drop-off rhythms of the engorged larvae and nymphs of lxodes persulcatus Schulze (Acari: Ixodidae) observed under laboratory conditions. Med. Entomol. Zool., 49: 285–289. doi: 10.7601/mez.49.285

Fujimoto, K. (1999) The activities of Ixodes monospinosus and Haemaphysalis kitaokai adults (Acari: Ixodidae) in spring and autumn analyzed by a field study. Med. Entomol. Zool., 50: 147–149. doi: 10.7601/mez. 50.147

藤本和義 (2001) マダニの吸血活動休眠による調節. 「ダニの生物学」(青木淳一編). pp. 92–108. 東京大学出版.

Fujimoto, K. (2005) The seasonal activity of Haemaphysalis megaspinosa Saito adults (Acari: Ixodidae) in the mountainous regions of Nara Park and the analysis under experimental outdoor conditions. Bulletin of Saitama Medical School Junior College, 16: 39–42.

藤本和義ほか (1987) マダニ類の生態学的研究: 2. 埼玉県南西部における3種のマダニ類, キチマダニ, ヤマトマダニ, タネガタマダニの季節的消長の比較. 衛生動物, 38: 7–12. doi: 10.7601/mez.38.7

Fujisaki, K. et al. (1976) Comparative observations on some bionomics of Japanese ixodid ticks under laboratory cultural conditions. Natl. Inst. Anim. Health Q. (Tokyo), 16: 122–128.

藤崎幸蔵 (1988) マダニの生物学─マダニの出現と進化. 畜産の研究. 42: 9–12.

藤崎幸蔵 (2008) マダニの系統発生に関する最近の知見. 鹿児島県獣医師会会報, 21: 5–10.

藤田博己ほか (2013) 2012年までに確認できた福島県のマダニ類とマダニ媒介リケッチア. 衛生動物, 64: 37–41. doi: 10.7601/mez.64.37

Gaff, H. D. et al. (2015) TickBot: A novel robotic device for controlling tick populations in the natural environment. Ticks Tick Borne Dis., 6: 146–151. doi: 10.1016/j.ttbdis.2014.11.004

Gherman, C. M. et al. (2012) CO2 flagging—an improved method for the collection of questing ticks. Parasit. Vectors, 5: 125. doi: 10.1186/1756-3305-5-125

Hasle, G. et al. (2008) Multiple paternity in Ixodes ricinus (Acari: Ixodidae), assessed by microsatellite markers. J. Parasitol., 94: 345–347. doi: 10.1645/GE-1280.1

Hoogstraal, H. and Santana, F. J. (1974) Haemaphysalis (Kaiseriana) mageshimaensis (Ixodoidea: Ixodidae): Human and Wild and Domestic Mammal Hosts, and Distribution in Japan, Taiwan, and China. J. Parasitol., 60: 866–869. doi: 10.2307/3278920

Hoogstraal, H. et al. (1968) Review of Haemaphysalis (kaiseriana) longicornis Neumann (resurrected) of Australia, New Zealand, New Caledonia, Fiji, Japan, Korea, and Northeastern China and USSR, and its parthenogenetic and bisexual populations (Ixodoidea, Ixodidae). J. Parasitol., 54: 1197.

Horigane, M. et al. (2008) Isolation and expression of the retinoid X receptor from last instar nymphs and adult females of the soft tick Ornithodoros moubata (Acari: Argasidae). Gen. Comp. Endocrinol., 156: 298–311. doi: 10.1016/j.ygcen.2008.01.021

Horigane, M. et al. (2010) Characterization of a vitellogenin gene reveals two phase regulation of vitellogenesis by engorgement and mating in the soft tick Ornithodoros moubata (Acari: Argasidae). Insect Mol. Biol., 19: 501–515. doi: 10.1111/j.1365-2583.2010.01007.x

Jaffe, H. et al. (1986) Controlled-release reservoir systems for the delivery of insect steroid analogues against ticks (Acari: Ixodidae), J. Med. Entomol., 23: 685–691. doi: 10.1093/jmedent/23.6.685

Jori, F. et al. (2013) Review of the sylvatic cycle of African swine fever in sub-Saharan Africa and the Indian ocean. Virus Res., 173: 212–227. doi: 10.1016/j.virusres.2012.10.005

門崎允昭ほか (1993) 日本産クマ類の外部寄生虫. 北海道開拓記念館研究年報, 21: 1–20. doi: 10.24484/sitereports.128299-114392

環境省 (2021) 全国のニホンジカ及びイノシシの個体数推定及び生息分布調査の結果について (令和2年度). 20210302日環境省報道発表.

Khalil, S. M. et al. (2011) Full-length sequence, regulation and developmental studies of a second vitellogenin gene from the American dog tick, Dermacentor variabilis. J. Insect Physiol., 57: 400–408. doi: 10.1016/j.jinsphys.2010.12.008

北岡茂男 (1971)「家畜衛生指導事業研修用テキストII-7-5 マダニ類―分類・生理・生態・家畜との関係」. 日本獣医師会.

Kitaoka, S. (1961) Physiological and ecological studies on some ticks: VII. Parthenogenetic and bisexual races of Haemaphysalis bispinosa in Japan and experimental crossing between them. Natl. Inst. Anim. Hlth. Quart., 1: 142–149.

Labruna, M. B. and Faccini, J. L. H. (2020) The nonparasitic phase of Dermacentor nitens under field conditions in southeastern Brazil. Rev. Bras. Parasitol. Vet., 29: e008620. doi: 10.1590/S1984-29612020090

Lomas, L. O. et al. (1997) A novel neuropeptide–endocrine interaction controlling ecdysteroid production in ixodid ticks. Proc. Biol. Sci., 264: 589–596. doi: 10.1098/rspb.1997.0084

Lu, X. et al. (2021) The ecdysteroid receptor regulates salivary gland degeneration through apoptosis in Rhipicephalus haemaphysaloides. Parasit. Vectors, 14: 612. doi: 10.1186/s13071-021-05052-2

Lyu, B. et al. (2023) Identification and characterization of ecdysis-related neuropeptides in the lone star tick Amblyomma americanum. Front. Endocrinol., 14: 1256618. doi: 10.3389/fendo.2023.1256618

桝井昭夫 (2004) ゲノム創農薬のターゲットとしての昆虫ホルモン受容体. 日本農薬学会誌, 29: 284–287. doi: 10.1584/jpestics.29.284

松本正吾 (2021) 幼虫の頭部をもつ国蝶オオムラサキ. 化学と生物. 59: 182–190. doi: 10.1271/kagakutoseibutsu.59.182

Matsuo, T. et al. (1998) Studies on in vitro extrusion and ultrastructure of the spermatophore in Haemaphysalis longicornis (Acari: Ixodidae). Acta Zool., 79: 69–74. doi: 10.1111/j.1463-6395.1998.tb01142.x

McCoy, K. D. and Tirard, C. (2002) Reproductive strategies of the seabird tick Ixodes uriae (Acari: Ixodidae). J. Parasitol., 88: 813–816. doi: 10.2307/3285372

中島涼子・岩佐光啓 (2001) EB5十勝地方におけるヤマトマダニ (lxodes ovatus) とシュルツェマダニ (I. persulcatus) の生態—発生消長と植生上の移動. 衛生動物, 52 (Supplement): 141. doi: 10.7601/mez.52.141_4

Napoli, E. et al. (2021) Ectoparasites of wild rabbit (Oryctolagus cuniculus) in Southern Italy. Vet. Parasitol. Reg. Stud. Reports, 24: 100555. doi: 10.1016/j.vprsr.2021.100555

Natividade, U. A. et al. (2021) Locomotion activity and its effects on the survival of Amblyomma sculptum (Acari: Ixodidae) nymphs under laboratory conditions. Ticks Tick Borne Dis., 12: 101562. doi: 10.1016/j.ttbdis.2020.101562

Needham, G. R. and Teel, P. D. (1991) Off-host physiological ecology of ixodid ticks. Annu. Rev. Entomol., 36: 659–681. doi: 10.1146/annurev.en.36.010191.003303

Oliver, J. H. Jr. (1971) Parthenogenesis in mites and ticks (Arachnida: Acari). Am. Zool., 11: 283–299. https: //www.jstor.org/stable/3881754

Oliver, J. H. Jr. (1982) Tick reproduction: Sperm development and cytogenetics. In: Physiology of Ticks (Obenchain, F. D. and Galun, R. eds.). pp. 245–275. Pergamon Press.

Oliver, J. H. Jr. and Dotson, E. M. (1993) Hormonal control of molting and reproduction in ticks. Amer. Zool., 33: 384–396. doi: 10.1093/icb/33.3.384

Oliver, J. H. Jr. et al. (1973) Cytogenetics of ticks (Acari: Ixodoidea). Chromosoma, 42: 269–288. doi: 10.1007/BF00284775

Oliver, J. H. Jr. et al. (1992) Role of synganglion in oogenesis of the tick Ornithodoros parkeri (Acari: Argasidae). J. Parasitol., 78: 93–98. doi: 10.2307/3283694

Owen, J. P. et al. (2014) Comparative off-host survival of larval Rocky Mountain Wood Ticks (Dermacentor andersoni) collected from ecologically distinct field populations. Med. Vet. Entomol., 28: 341–344. doi: 10.1111/mve.12049

Pappas, P. J. et al. (1971) Mating necessary for complete feeding of female Dermacentor variabilis (Acari: Ixodidae). J. Geogia Ent. Soc., 6: 122–124.

Portugal, J. S. et al. (2020) Laboratory studies of questing behavior in colonized nymphal Amblyomma maculatum ticks (Acari: Ixodidae). J. Med. Entomol., 57: 1480–1487. doi: 10.1093/jme/tjaa077

Rainey, T. et al. (2018) Discovery of Haemaphysalis longicornis (Ixodida: Ixodidae) parasitizing a sheep in New Jersey, United States. J. Med. Entomol., 55: 757–759. doi: 10.1093/jme/tjy006

Rees, H. H. (2004) Hormonal control of tick development and reproduction. Parasitology, 129: S127–S143. doi: 10.1017/s003118200400530x

Richardson, E. A. et al. (2022) The effects of habitat type and pathogen infection on tick host-seeking behaviour. Parasitology, 149: 59–64. doi: 10.1017/S0031182021001554

Roller, L. et al. (2010) Ecdysis triggering hormone signaling in arthropods. Peptides, 31: 429–441. doi: 10.1016/j.peptides.2009.11.022

Rosendale, A. J. et al. (2017) Dehydration and starvation yield energetic consequences that affect survival of the American dog tick. J. Insect Physiol., 101: 39–46. doi: 10.1016/j.jinsphys.2017.06.012

Saito, Y. and Hoogstraal, H. (1973) Haemaphysalis (Kaiseriana) mageshimaensis sp. n. (Ixodoidea: Ixodidae), a Japanese deer parasite with bisexual and parthenogenetic reproduction. J. Parasitol., 59: 569–578. doi: 10.2307/3278797

Sankhon, N. et al. (1999) Effect of methoprene and 20-hydroxyecdysone on vitellogenin production in cultured fat bodies and backless explants from unfed female Dermacentor variabilis. J. Insect Physiol., 45: 755–761. doi: 10.1016/s0022-1910(99)00054-2

Shanbaky, N. M. et al. (1990) Vitellogenic and nonvitellogenic proteins in hemolymph, ovaries, and eggs of Argas (Argas) hermanni (Acari: Argasidae). J. Med. Entomol., 27: 986–992. doi: 10.1093/jmedent/27.6.986

Shepherd, J. G. (2022) Record longevity and reproduction of an African tick, Argas brumpti (Ixodida: Argasidae). J. Med. Entomol., 59: 777–778. doi: 10.1093/jme/tjab205

柴田祥明ほか (2020) 鳥取県東部におけるマダニ科の季節消長. 鳥取県立博物館研究報告, 57: 1–18.

Shimada, M. et al. (2022) Preliminary report on the relationship between recent tick bite cases caused by Amblyomma testudinarium and ticks collected from wild boar and deer in Ashikaga City, Tochigi Prefecture, Japan. J. Acarol. Soc. Jpn., 31: 75–83. doi: 10.2300/acari.31.75

白藤 (梅宮) 梨可ほか (2013) 未吸血マダニの生物学. 獣医寄生虫学会誌, 11: 80–86.

Sonenshine, D. E. (1991) Biology of Ticks volume 1. Oxford University Press.

Sonenshine, D. E. and Roe, R. M. eds. (2014) Biology of Ticks volume 1. 2nd ed. Oxford University Press.

Sonenshine, D. E. et al. (1986) Chemically mediated behavior in Acari: Adapations for finding hosts and mates. J. Chem. Ecol., 12: 1091–1108. doi: 10.1007/BF01638998

Thompson, D. M. et al. (2005) In vivo role of 20-hydroxyecdysone in the regulation of the vitellogenin mRNA and egg development in the American dog tick, Dermacentor variabilis (Say). J. Insect Physiol., 51: 1105–1116. doi: 10.1016/j.jinsphys.2005.05.011

Thompson, D. M. et al. (2007) Sequence and the developmental and tissue-specific regulation of the first complete vitellogenin messenger RNA from ticks responsible for heme sequestration. Insect Biochem. Mol. Biol., 37: 363–374. doi: 10.1016/j.ibmb.2007.01.004

角田 隆 (1997) 同所的に生息するマダニ類の生態. VECA News, 37: 1–10.

Tsunoda, T. (2014) Detachment of hard ticks (Acari: Ixodidae) from hunted sika deer (Cervus nippon). Exp. Appl. Acarol., 63: 545–550. doi: 10.1007/s10493-014-9795-x

Tsunoda, T. and Tatsuzawa, S. (2004) Questing height of nymphs of the bush tick, Haemaphysalis longicornis, and its closely related species, H. mageshimaensis: Correlation with body size of the host. Parasitology, 128: 503–509. doi: 10.1017/s0031182004004913

Umemiya-Shirafuji, R. et al. (2012) Target of rapamycin (TOR) controls vitellogenesis via activation of the S6 kinase in the fat body of the tick, Haemaphysalis longicornis. Int. J. Parasitol., 42: 991–998. doi: 10.1016/j.ijpara.2012.08.002

Vail, S. C. and Smith, G. (2002) Vertical movement and posture of blacklegged tick (Acari: Ixodidae) nymphs as a function of temperature and relative humidity in laboratory experiments. J. Med. Entomol., 39: 842–846. doi: 10.1603/0022-2585-39.6.842

Wang, T. et al. (2019) The complete mitochondrial genome and expression profile of mitochondrial protein-coding genes in the bisexual and parthenogenetic Haemaphysalis longicornis. Front. Physiol., 10: 982. doi: 10.3389/fphys.2019.00982

Watanabe, M. et al. (2002) Mechanism allowing an insect to survive complete dehydration and extreme temperatures. J. Exp. Biol., 205: 2799–2802. doi: 10.1242/jeb.205.18.2799

Weiss, B. L. and Kaufman, W. R. (2001) The relationship between ‘critical weight’ and 20-hydroxyecdysone in the female ixodid tick, Amblyomma hebraeum. J. Insect Physiol., 47: 1261–1267. doi: 10.1016/s0022-1910(01)00112-3

吉田利男 (1975) 放牧牧野におけるマダニ駆除に関する生態学的研究. 信州大学教養部紀要第二部自然科学, 9: 27–111.

Zhu, X. X. et al. (1991) Epidermis as the source of ecdysone in an argasid tick. Proc. Natl. Acad. Sci. USA, 88: 3744–3747. doi: 10.1073/pnas.88.9.3744

伊戸泰博ほか (1983) 栃木県那須地方の放牧草地におけるフタトゲチマダニの越冬生態. 草地試験場研究報告, 24: 110–118.

伊東拓也・高橋健一 (2006) エゾシカ寄生マダニ類の生態. 「エゾシカの保全と管理」(梶 光一ほか編). pp. 165–181, 北海道大学出版会.

 

第5章 マダニによる被害

Abraham, N. M. et al. (2017) Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc. Natl. Acad. Sci. USA, 114: E781–E790. doi: 10.1073/pnas.1613422114

Akter, A. et al. (2017) Extremely low genomic diversity of Rickettsia japonica distributed in Japan. Genome Biol. Evol., 9: 124–133. doi: 10.1093/gbe/evw304

安藤秀二・藤田博己 (2013) 国内における紅斑熱群リケッチア症を媒介するマダニ類と病原体との多様な関係. 衛生動物, 64: 5–7. doi: 10.7601/mez.64.5

Ando, S. et al. (2010) Human Rickettsia heilongjiangensis infection, Japan. Emerg. Infect. Dis., 16: 1306–1308. doi: 10.3201/eid1608.100049

Asgari, S. (2014) Role of microRNAs in arbovirus/vector interactions. Viruses, 6: 3514–3534. doi: 10.3390/v6093514

Baneth, G. (2011) Perspectives on canine and feline hepatozoonosis. Vet. Parasitol., 181: 3–11. doi: 10.1016/j.vetpar.2011.04.015

Barbour, A. G. et al. (2015) Borrelia. In: Bergeys Manual of Systematics of Archaea and Bacteria (Whitman, W. B. ed.). Wiley.

Bezerra-Santos, M. A. et al. (2022) Cercopithifilaria spp. in ticks of companion animals from Asia: new putative hosts and vectors. Ticks Tick Borne Dis., 13: 101957. doi: 10.1016/j.ttbdis.2022.101957

Capelli-Peixoto, J. et al. (2017) The transcription factor Relish controls Anaplasma marginale infection in the bovine tick Rhipicephalus microplus. Dev. Comp. Immunol., 74: 32–39. doi: 10.1016/j.dci.2017.04.005

Ceraul, S. M. et al. (2002) Resistance of the tick Dermacentor variabilis (Acari: Ixodidae) following challenge with the bacterium Escherichia coli (Enterobacteriales: Enterobacteriaceae). J. Med. Entomol., 39: 376–383. doi: 10.1603/0022-2585-39.2.376

Chiffi, G. et al. (2023) Tick-borne encephalitis: A comprehensive review of the epidemiology, virology, and clinical picture. Rev. Med. Virol., 33: e2470. doi: 10.1002/rmv.2470

Dall'Agnol, B. et al. (2019) Clinical findings associated with Ornithodoros brasiliensis tick parasitism in travelers, Southern Brazil. Wilderness Environ. Med., 30: 437–440. doi: 10.1016/j.wem.2019.06.012

Dumler, J. S. et al. (2015) Anaplasma. In: Bergey's Manual of Systematics of Archaea and Bacteria (Whitman, W. B. ed.). Wiley.

Ejiri, H. et al. (2015) Genetic and biological characterization of Muko virus, a new distinct member of the species Great Island virus (genus Orbivirus, family Reoviridae), isolated from ixodid ticks in Japan. Arch. Virol., 160: 2965–2977. doi: 10.1007/s00705-015-2588-7

Ejiri, H. et al. (2018a) Characterization of a novel thogotovirus isolated from Amblyomma testudinarium ticks in Ehime, Japan: A significant phylogenetic relationship to Bourbon virus. Virus Res., 249: 57–65. doi: 10.1016/j.virusres.2018.03.004

Ejiri, H. et al. (2018b) Isolation and characterization of Kabuto Mountain virus, a new tick-borne phlebovirus from Haemaphysalis flava ticks in Japan. Virus Res., 244: 252–261. doi: 10.1016/j.virusres.2017.11.030

Faber, M. et al. (2018) Tularemia in Germany: A re-emerging zoonosis. Front. Cell. Infect. Microbiol., 8: 40. doi: 10.3389/fcimb.2018.00040

Francischetti, I. M. et al. (2009) The role of saliva in tick feeding. Front. Biosci. (Landmark Ed). 14: 2051–2088. doi: 10.2741/3363

藤田博己 (2004) 野兎病, モダンメディア, 50: 99–103.

Fujita, R. et al. (2017) Isolation and characterization of Tarumizu tick virus: A new coltivirus from Haemaphysalis flava ticks in Japan. Virus Res., 242: 131–140. doi: 10.1016/j.virusres.2017.09.017

Gaowa et al. (2013) Rickettsiae in ticks, Japan, 2007–2011. Emerg. Infect. Dis., 19: 338–340. doi: 10.3201/eid1902.120856

Gulia-Nuss, M. et al. (2016) Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun., 7: 10507. doi: 10.1038/ncomms10507

Hajdušek, O. et al. (2013) Interaction of the tick immune system with transmitted pathogens. Front. Cell. Infect. Microbiol., 3: 26. doi: 10.3389/fcimb.2013.00026

Hatta, T. et al. (2012) Semi-artificial mouse skin membrane feeding technique for adult tick, Haemaphysalis longicornis. Parasit. Vectors, 5: 263. doi: 10.1186/1756-3305-5-263

Higuchi, S. et al. (1991) Development of Babesia ovata in the ovary and eggs of the tick, Haemaphysalis longicornis. Kitasato Arch. Exp. Med., 64, 133–139.

Hildebrandt, A. et al. (2021) Human Babesiosis in Europe. Pathogens, 10: 1165. doi: 10.3390/pathogens10091165

猪熊 壽 (2006) ヘパトゾーン感染症. SAC: Small Animal Clinic. 146: 4–9.

Inoue, N. et al. (2001) Characterization of phagocytic hemocytes in Ornithodoros moubata (Acari: Ixodidae). J. Med. Entomol., 38: 514–519. doi: 10.1603/0022-2585-38.4.514

Ishikura, M. et al. (2002) Phylogenetic analysis of spotted fever group Rickettsiae isolated from ticks in Japan. Microbiol. Immunol., 46: 241–247. doi: 10.1111/j.1348-0421.2002.tb02692.x

板垣 匡・藤﨑幸藏編著 (2019)「動物寄生虫病学 (四訂版). 朝倉書店.

Jalovecka, M. et al. (2018) The complexity of piroplasms life cycles. Front. Cell. Infect. Microbiol., 8: 248. doi: 10.3389/fcimb.2018.00248

Kawabata, M. et al. (1987) Lyme disease in Japan and its possible incriminated tick vector, Ixodes persulcatus. J. Infect. Dis., 156: 854. doi: 10.1093/infdis/156.5.854

Kernif, T. et al. (2016) Emerging tick-borne bacterial pathogens. Microbiol. Spectr., 4. doi: 10.1128/microbiolspec.EI10-0012-2016

Kim, K. H. et al. (2013) Severe Fever with Thrombocytopenia Syndrome, South Korea, 2012. Emerg. Infect. Dis., 19: 1892–1894. doi: 10.3201/eid1911.130792

北岡茂男 (1971)「家畜衛生指導事業研修用テキストII-7-5 マダニ類分類・生理・生態・家畜との関係」. 日本獣医師会.

Kobayashi, D. et al. (2020) RNA virome analysis of questing ticks from Hokuriku District, Japan, and the evolutionary dynamics of tick-borne phleboviruses. Ticks Tick Borne Dis., 11: 101364. doi: 10.1016/j.ttbdis.2019.101364

Kobayashi, D. et al. (2021a) Detection of jingmenviruses in Japan with evidence of vertical transmission in ticks. Viruses, 13: 2547. doi: 10.3390/v13122547

Kobayashi, D. et al. (2021b) Detection of quaranjavirus-like sequences from Haemaphysalis hystricis ticks collected in Japan. Jpn. J. Infect. Dis., 75: 195–198. doi: 10.7883/yoken.jjid.2021.129

Kobayashi, D. et al. (2021c) Toyo virus, a novel member of the Kaisodi group in the genus Uukuvirus (family Phenuiviridae) found in Haemaphysalis formosensis ticks in Japan. Arch. Virol., 166: 2751–2762. doi: 10.1007/s00705-021-05193-w

Kodama, F. et al. (2021) A novel nairovirus associated with acute febrile illness in Hokkaido, Japan. Nat. Commun., 12: 5539. doi: 10.1038/s41467-021-25857-0

Komitova, R. et al. (2010) Tularemia in bulgaria 2003–2004. J. Infect. Dev. Ctries., 4: 689–694. doi: 10.3855/jidc.712

Kopácek, P. et al. (2010) Tick innate immunity. Adv. Exp. Med. Biol., 708, 137–162.

Krause, P. J. et al. (2015) Borrelia miyamotoi infection in nature and in humans. Clin. Microbiol. Infect., 21: 631–639. doi: 10.1016/j.cmi.2015.02.006

Lemaitre, B. and Hoffmann, J. (2007) The host defense of Drosophila melanogaster. Annu. Rev. Immunol., 25: 697–743. doi: 10.1146/annurev.immunol.25.022106.141615

Li, H. et al. (2015) Human infection with a novel tick-borne Anaplasma species in China: a surveillance study. Lancet Infect. Dis., 15: 663–667. doi: 10.1016/S1473-3099(15)70051-4

Lin, T. L. et al. (2020) The first discovery of severe fever with thrombocytopenia syndrome virus in Taiwan. Emerg. Microbes Infect., 9: 148–151. doi: 10.1080/22221751.2019.1710436

Liu, L. et al. (2012) Ixodes scapularis JAK-STAT pathway regulates tick antimicrobial peptides, thereby controlling the agent of human granulocytic anaplasmosis. J. Infect. Dis., 206: 1233–1241. doi: 10.1093/infdis/jis484

Lv, X. et al. (2023) Yezo Virus Infection in Tick-Bitten Patient and Ticks, Northeastern China. Emerg. Infect. Dis., 29: 797–800. doi: 10.3201/eid2904.220885

Maeda, H. et al. (2016) Establishment of a novel tick-Babesia experimental infection model. Sci. Rep., 6: 37039. doi: 10.1038/srep37039

Maeda, H. et al. (2017) Initial development of Babesia ovata in the tick midgut. Vet. Parasitol., 233: 39–42. doi: 10.1016/j.vetpar.2016.11.020

Masuzawa, T. (2004) Terrestrial distribution of the Lyme borreliosis agent Borrelia burgdorferi sensu lato in East Asia. Jpn. J. Infect. Dis., 57: 229–235.

Matsuno, K, et al. (2018a) The unique phylogenetic position of a novel tick-borne phlebovirus ensures an ixodid origin of the genus Phlebovirus. mSphere, 3: e00239-18. doi: 10.1128/msphere.00239-18

Matsuno, K. et al. (2018b) Fatal tickborne phlebovirus infection in captive cheetahs, Japan. Emerg. Infect. Dis., 24: 1726–1729. doi: 10.3201/eid2409.171667

南 哲郎・藤永 徹編 (1986)「獣医住血微生物病」. 近代出版.

峰宗太郎ほか (2023) 初めて診断されたオズウイルス感染症患者. IASR, 44: 109–111. https: //www.niid.go.jp/niid/ja/route/arthlopod/1771-idsc/iasr-news/12108-521p01.html

Myllymäki, H. and Rämet, M. (2014) JAK/STAT pathway in Drosophila immunity. Scand. J. Immunol., 79: 377–385. doi: 10.1111/sji.12170

Nakao, R. et al. (2013) A novel approach, based on BLSOMs (Batch Learning Self-Organizing Maps), to the microbiome analysis of ticks. ISME J., 7: 1003–1015. doi: 10.1038/ismej.2012.171

Ohashi, N. et al. (2013) Human granulocytic anaplasmosis, Japan. Emerg. Infect. Dis., 19: 289–292. doi: 10.3201/eid1902.120855

Ohira, M. et al. (2023) First evidence of tick-borne encephalitis (TBE) outside of Hokkaido Island in Japan. Emerg. Microbes Infect., 12: 2278898. doi: 10.1080/22221751.2023.2278898

Park, E. S. et al. (2019) Severe fever with thrombocytopenia syndrome phlebovirus causes lethal viral hemorrhagic fever in cats. Sci. Rep., 9: 11990. doi: 10.1038/s41598-019-48317-8

Parola, P. et al. (2013) Update on tick-borne rickettsioses around the world: A geographic approach. Clin. Microbiol. Rev., 26: 657–702. doi: 10.1128/CMR.00032-13

Platonov, A. E. et al. (2011) Humans infected with relapsing fever spirochete Borrelia miyamotoi, Russia. Emerg. Infect. Dis., 17: 1816–1823. doi: 10.3201/eid1710.101474

Pritt, B. S. et al. (2011) Emergence of a new pathogenic Ehrlichia species, Wisconsin and Minnesota, 2009. N. Engl. J. Med., 365: 422–429. doi: 10.1056/NEJMoa1010493

Qiu, Y. et al. (2019) Human borreliosis caused by a new world relapsing fever Borrelia-like organism in the old world. Clin. Infect. Dis., 69: 107–112. doi: 10.1093/cid/ciy850

Rattanakomol, P. et al. (2022) Severe fever with thrombocytopenia syndrome virus infection, Thailand, 2019–2020. Emerg. Infect. Dis., 28: 2572–2574. doi: 10.3201/eid2812.221183

Reck, J. et al. (2011) Tick toxicosis in a dog bitten by Ornithodoros brasiliensis. Vet. Clin. Pathol., 40: 356–360. doi: 10.1111/j.1939-165X.2011.00338.x

Reck, J. et al. (2013) Epidemiology of Ornithodoros brasiliensis (mouro tick) in the southern Brazilian highlands and the description of human and animal retrospective cases of tick parasitism. Ticks Tick Borne Dis., 4: 101–109. doi: 10.1016/j.ttbdis.2012.09.004

Rosa, R. D. et al. (2016) Exploring the immune signalling pathway-related genes of the cattle tick Rhipicephalus microplus: From molecular characterization to transcriptional profile upon microbial challenge. Dev. Comp. Immunol., 59: 1–14. doi: 10.1016/j.dci.2015.12.018

Russell, R. C. et al. (2013) The encyclopedia of medical and veterinary entomology. CABI.

Sato, K. et al. (2014) Human infections with Borrelia miyamotoi, Japan. Emerg. Infect. Dis., 20: 1391–1393. doi: 10.3201/eid2008.131761

Schnettler, E. et al. (2014) Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses. Nucleic Acids Res., 42: 9436–9446. doi: 10.1093/nar/gku657

Shaw, D. K. et al. (2017) Infection-derived lipids elicit an immune deficiency circuit in arthropods. Nat. Commun., 8: 14401. doi: 10.1038/ncomms14401

Shimada, S. et al. (2016) Tofla virus: A newly identified Nairovirus of the Crimean-Congo hemorrhagic fever group isolated from ticks in Japan. Sci. Rep., 6: 20213. doi: 10.1038/srep20213

Shimoda, H, et al. (2019) Detection of a novel tick-borne flavivirus and its serological surveillance. Ticks Tick Borne Dis., 10: 742–748. doi: 10.1016/j.ttbdis.2019.03.006

Smith, A. A. et al. (2016) Cross-species interferon signaling boosts microbicidal activity within the tick vector. Cell Host Microbe, 20: 91–98. doi: 10.1016/j.chom.2016.06.001

Sonenshine, D. E. and Roe, R. M. eds. (2014) Biology of Ticks volume 1. 2nd ed. Oxford University Press.

Su, H. et al. (2022) Serologic evidence of human exposure to ehrlichiosis agents in Japan. Emerg. Infect. Dis., 28: 2355–2357. doi: 10.3201/eid2811.212566

Takahashi, T. et al. (2014) The first identification and retrospective study of severe fever with thrombocytopenia syndrome in Japan. J. Infect. Dis., 209: 816–827. doi: 10.1093/infdis/jit603

Takano, A. et al. (2011) Multilocus sequence typing implicates rodents as the main reservoir host of human-pathogenic Borrelia garinii in Japan. J. Clin. Microbiol., 49: 2035–2039. doi: 10.1128/JCM.02544-10

Takashima, I. et al. (1997) A case of tick-borne encephalitis in Japan and isolation of the the virus. J. Clin. Microbiol., 35: 1943–1947. doi: 10.1128/jcm.35.8.1943-1947.1997

Takeda, T. et al. (1998) Isolation of Tick-Borne Encephalitis Virus from Ixodes ovatus (Acari: Ixodidae) in Japan. J. Med. Entomol., 35: 227–231. doi: 10.1093/jmedent/35.3.227

Talactac, M. R. et al. (2021) The antiviral immunity of ticks against transmitted viral pathogens. Dev. Comp. Immunol., 119: 104012. doi: 10.1016/j.dci.2021.104012

Torii, S. et al. (2019) Infection of newly identified phleboviruses in ticks and wild animals in Hokkaido, Japan indicating tick-borne life cycles. Ticks Tick Borne Dis., 10: 328–335. doi: 10.1016/j.ttbdis.2018.11.012

Tran, N. T. B. et al. (2022a) Epidemiological study of Kabuto Mountain virus, a novel uukuvirus, in Japan. J. Vet. Med. Sci., 84: 82–89. doi: 10.1292/jvms.21-0577

Tran, N. T. B. et al. (2022b) Zoonotic Infection with Oz Virus, a Novel Thogotovirus. Emerg. Infect. Dis., 28: 436–439. doi: 10.3201/eid2802.211270

Tran, X. C. et al. (2019) Endemic severe fever with thrombocytopenia syndrome, Vietnam. Emerg. Infect. Dis., 25: 1029–1031. doi: 10.3201/eid2505.181463

辻 尚利・藤崎幸蔵 (2012) マダニの生存戦略と病原体伝播. 化学と生物, 50: 119–126. doi: 10.1271/kagakutoseibutsu.50.119

Weisheit, S. et al. (2015) Ixodes scapularis and Ixodes ricinus tick cell lines respond to infection with tick-borne encephalitis virus: Transcriptomic and proteomic analysis. Parasit. Vectors, 8: 599. doi: 10.1186/s13071-015-1210-x

Wikander, Y. M. and Reif, K. E. (2023) Cytauxzoon felis: An overview. Pathogens, 12: 133. doi: 10.3390/pathogens12010133

Win, A. M. et al. (2020) Genotypic heterogeneity of Orientia tsutsugamushi in scrub typhus patients and thrombocytopenia syndrome co-infection, Myanmar. Emerg. Infect. Dis., 26: 1878–1881. doi: 10.3201/eid2608.200135

Yoshii, K. et al. (2015) Isolation of the Thogoto virus from a Haemaphysalis longicornis in Kyoto City, Japan. J. Gen. Virol., 96: 2099–2103. doi: 10.1099/vir.0.000177

Yu X-j and Walker D. H. (2015) Rickettsia. In: Bergeys Manual of Systematics of Archaea and Bacteria (Whitman, W. B. ed.). Wiley.

Yu, X. J. et al. (2011) Fever with Thrombocytopenia Associated with a Novel Bunyavirus in China. N. Engl. J. Med., 364: 1523–1532. doi: 10.1056/nejmoa1010095

Zlobin, V. I. et al. (2017) A brief history of the discovery of tick-borne encephalitis virus in the late 1930s (based on reminiscences of members of the expeditions, their colleagues, and relatives). Ticks Tick Borne Dis., 8: 813–820. doi: 10.1016/j.ttbdis.2017.05.001

 

第6章 マダニ刺症とマダニ媒介性感染症の対策

バイエルジャパン株式会社動物用薬品事業部 (1989) バイチコール (プアオン法) について. 動薬研究. 40: 1–8.

Chinuki, Y. and Morita, E. (2019) Alpha-Gal-containing biologics and anaphylaxis. Allergol. Int., 68: 296–300. doi: 10.1016/j.alit.2019.04.001

Chinuki, Y. et al. (2016) Haemaphysalis longicornis tick bites are a possible cause of red meat allergy in Japan. Allergy, 71: 421–425. doi: 10.1111/all.12804

Doi, K. et al. (2020) Effects of introduced sika deer (Cervus nippon) and population control activity on the distribution of Haemaphysalis ticks in an island environment. Int. J. Parasitol. Parasites Wildl., 11: 302–307. doi: 10.1016/j.ijppaw.2020.03.001

Doi, K. et al. (2021) Ecological traps and boosters of ixodid ticks: The differing ecological roles of two sympatric introduced mammals. Ticks Tick Borne Dis., 12: 101687. doi: 10.1016/j.ttbdis.2021.101687

Dzemo, W. D. et al. (2022) Development of acaricide resistance in tick populations of cattle: A systematic review and meta-analysis. Heliyon, 8: e08718. doi: 10.1016/j.heliyon.2022.e08718

Ejiri, H. et al. (2018) Characterization of a novel thogotovirus isolated from Amblyomma testudinarium ticks in Ehime, Japan: A significant phylogenetic relationship to Bourbon virus. Virus Res., 249: 57–65. doi: 10.1016/j.virusres.2018.03.004

FAO Working Group on Parasite Resistance (2004) Resistance Management and Integrated Parasites Control in Ruminants: Guidelines. Module 1. Ticks: Acaricide Resistance: Diagnosis, Management and Prevention. pp. 25–77.

藤川愛咲子ほか (2020) マダニの自己除去直後に生じたマダニアナフィラキシーの1. 西日本皮膚科, 82: 99–102. doi: 10.2336/nishinihonhifu.82.99

Hashizume, H. et al. (2018) Repeated Amblyomma testudinarium tick bites are associated with increased galactose-α-1,3-galactose carbohydrate IgE antibody levels: A retrospective cohort study in a single institution. J. Am. Acad. Dermatol., 78: 1135–1141. doi: 10.1016/j.jaad.2017.12.028

Inoue, Y. et al. (2020) Epidemiological survey of tick bites occurring in Hyogo Prefecture from 2014 through 2018. Med. Entomol. Zool., 71: 31–38. doi: 10.7601/mez.71.31

板垣 匡・藤﨑幸藏編著 (2019)「動物寄生虫病学 (四訂版). 朝倉書店.

Johnston, L. A. et al. (1968) Eradication of cattle tick (Boophilus microplus) from Magnetic Island, Queensland, in the presence of native fauna. Aust. Vet. J., 44: 403–405. doi: 10.1111/j.1751-0813.1968.tb09131.x

加倉井真樹ほか (2023) 茨城県でみられたタカサゴキララマダニによる刺症の4. 臨床皮膚科. 77: 67–72. doi: 10.11477/mf.1412206877

Keesing, F. et al. (2009) Hosts as ecological traps for the vector of Lyme disease. Proc. R. Soc. B Biol. Sci., 276: 3911–3919. doi: 10.1098/rspb.2009.1159

那根 元 (2015)「八重山群島におけるオウシマダニの撲滅魂」. 那根 元 (私家版).

夏秋 優 (2017) マダニ刺症の現状と対応. 西日本皮膚科, 79: 5–11. doi: 10.2336/nishinihonhifu.79.5

夏秋 優 (2019) 1. ダニ媒介性感染症. 日皮会誌, 129: 2493–2501. doi: 10.14924/dermatol.129.2493

夏秋 優ほか (2013) タカサゴキララマダニ刺症に伴う遊走性紅斑: Tick-associated rash illness (TARI). 衛生動物, 64: 47–49. doi: 10.7601/mez.64.47

Natsuaki, M. (2021) Tick bites in Japan. J. Dermatol., 48: 423–430. doi: 10.1111/1346-8138.15779

Natsuaki, M. et al. (2014) Case of tick-associated rash illness caused by Amblyomma testudinarium. J. Dermatol., 41: 834–836. doi: 10.1111/1346-8138.12594

日本獣医寄生虫学会監修 (2020)「獣医学教育モデル・コア・カリキュラム準拠─寄生虫病学 (3). 緑書房.

野元加奈ほか (2010) 栃木県茂木町の水田と畑地におけるイノシシ被害地点と周辺環境特性. 哺乳類科学, 50: 129–135. doi: 10.11238/mammalianscience.50.129

Ostfeld, R. S. (2010) Lyme Disease: The Ecology of a Complex System. Oxford University Press.

島田瑞穂ほか (2020) 栃木県足利赤十字病院における3年間 (20172019) のマダニ刺症72例の検討タカサゴキララマダニ刺症62例を中心に. 衛生動物, 71: 219–223. doi: 10.7601/mez.71.219

Shimada, M. et al. (2022) Preliminary report on the relationship between recent tick bite cases caused by Amblyomma testudinarium and ticks collected from wild boar and deer in Ashikaga City, Tochigi Prefecture, Japan. J. Acarol. Soc. Jpn., 31: 75–83. doi: 10.2300/acari.31.75

島田瑞穂ほか (2023) 栃木県足利赤十字病院における3年間 (2020–2022) のマダニ刺症49例の検討タカサゴキララマダニ刺症40例の傾向. 衛生動物, 74: 53–56. doi: 10.7601/mez.74.53

高田伸弘ほか (2019)「医ダニ学図鑑―見える分類と疫学」. 北隆館.

Takahashi, M. et al. (2021) First record of the hard tick Amblyomma testudinarium Koch, 1844 (Acari: Ixodidae) in Saitama Prefecture, Japan. Bulletin of the Saitama Museum of Natural History, 15: 25–32. doi: 10.24715/smnh.15.0_25

 

第7章 マダニ研究の現状

Almazán, C. et al. (2018) A versatile model of hard tick infestation on laboratory rabbits. J. Vis. Exp., 140: e57994. doi: 10.3791/57994

Barrero, R. A. et al. (2017) Gene-enriched draft genome of the cattle tick Rhipicephalus microplus: Assembly by the hybrid Pacific Biosciences/Illumina approach enabled analysis of the highly repetitive genome. Int. J. Parasitol., 47: 569–583. doi: 10.1016/j.ijpara.2017.03.007

Battsetseg, B. et al. (2001) Detection of Babesia caballi and Babesia equi in Dermacentor nuttalli adult ticks. Int. J. Parasitol., 31: 384–386. doi: 10.1016/S0020-7519(01)00120-5

Bell-Sakyi, L. et al. (2018) The Tick Cell Biobank: A global resource for in vitro research on ticks, other arthropods and the pathogens they transmit. Ticks Tick Borne Dis., 9: 1364–1371. doi: 10.1016/j.ttbdis.2018.05.015

近山之雄ほか (2008) 飼育管理に用いる器具・装置類の改良によるフタトゲチマダニの継代管理技術の改善. 動衛研研究報告, 114: 37–43.

Cramaro, W. J. et al. (2015) Integration of Ixodes ricinus genome sequencing with transcriptome and proteome annotation of the naïve midgut. BMC Genomics, 16: 871. doi: 10.1186/s12864-015-1981-7

Cramaro, W. J. et al. (2017) Genome scaffolding and annotation for the pathogen vector Ixodes ricinus by ultra-long single molecule sequencing. Parasit. Vectors, 10: 71. doi: 10.1186/s13071-017-2008-9

De, S. et al. (2023) A high-quality Ixodes scapularis genome advances tick science. Nat. Genet., 55: 301–311. doi: 10.1038/s41588-022-01275-w

Fujimoto, K. (1989) Ecological studies on ixodid ticks: 6. The effects of temperature on the oviposition, development and survival of Ixodes ovatus Neumann (Acarina: Ixodidae). Med. Entomol. Zool., 40: 187–193. doi: 10.7601/mez.40.187

Fujimoto, K. (1990) Ecological studies on ixodid ticks: 7. The effects of humidity on oviposition, development and survival of Ixodes ovatus Neumann (Acarina: Ixodidae). Med. Entomol. Zool., 41: 331–339. doi: 10.7601/mez.41.331

Fujimoto, K. (1993) Effect of photoperiod on the attachment and development of immature Ixodes persulcatus Schulze (Acarina: Ixodidae). Med. Entomol. Zool., 44: 271–277. doi: 10.7601/mez.44.271

Fujimoto, K. (1994) Effect of photoperiod on host attachment and development of immature Ixodes ovatus Neumann (Acari: Ixodidae). J. Acarol. Soc. Jpn., 3: 7–12. doi: 10.2300/acari.3.7

Fujisaki, K. (1978) Development of acquired resistance precipitating antibody in rabbits experimentally infested with females of Haemaphysalis longicornis (Ixodoidea: Ixodidae). Natl. Inst. Anim. Health Q. (Tokyo), 18: 27–38.

Fujisaki, K. et al. (1976) Comparative observations on some bionomics of Japanese ixodid ticks under laboratory cultural conditions. Natl. Inst. Anim. Health Q. (Tokyo), 16: 122–128.

Giraldo-Calderón, G. I. et al. (2022) VectorBase.org updates: Bioinformatic resources for invertebrate vectors of human pathogens and related organisms. Curr. Opin. Insect Sci., 50: 100860. doi: 10.1016/j.cois.2021.11.008

Guerrero, F. D. et al. (2019) The Pacific Biosciences de novo assembled genome dataset from a parthenogenetic New Zealand wild population of the longhorned tick, Haemaphysalis longicornis Neumann, 1901. Data Brief, 27: 104602. doi: 10.1016/j.dib.2019.104602

Gulia-Nuss, M. et al. (2016) Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun., 7: 10507. doi: 10.1038/ncomms10507

八田岳士 (2020) マダニの人工吸血法過去・現在・未来. Med. Entomol. Zool., 71: 15–23. doi: 10.7601/mez.71.15

Hepburn, N. J. et al. (2007) In vivo characterization and therapeutic efficacy of a C5-specific inhibitor from the soft tick Ornithodoros moubata. J. Biol. Chem., 282: 8292–8299. doi: 10.1074/jbc.M609858200

Heyne, H. et al. (1987) Rearing and infection techniques for Amblyomma species to be used in heartwater transmission experiments. Onderstepoort J. Vet. Res., 54: 461–471.

Hill, C. A. and Wikel, S. K. (2005) The Ixodes scapularis Genome Project: an opportunity for advancing tick research. Trends Parasitol. 21: 151–153. doi: 10.1016/j.pt.2005.02.004

Ikadai, H. et al. (2007) Molecular evidence of Babesia equi transmission in Haemaphysalis longicornis. Am. J. Trop. Med. Hyg., 76: 694–697. doi: 10.4269/ajtmh.2007.76.694

Jia, N. et al. (2020) Large-scale comparative analyses of tick genomes elucidate their genetic diversity and vector capacities. Cell, 182: 1328–1340, e13. doi: 10.1016/j.cell.2020.07.023

Jones, L. D. et al. (1988) The rearing and maintenance of ixodid and argasid ticks in the laboratory. Anim. Techno., 39: 99–106.

Justen, L. et al. (2021) Identification of public submitted tick images: A neural network approach. PLoS One, 16: e0260622. doi: 10.1371/journal.pone.0260622

Kamio, T. et al. (1987) The improvement of "ear bag" method for tick infestation. Proc. Jpn. Assoc. Acarol., 14: 1–4.

Kelava, S. et al. (2021) Phylogenies from mitochondrial genomes of 120 species of ticks: Insights into the evolution of the families of ticks and of the genus Amblyomma. Ticks Tick Borne Dis., 12: 101577. doi: 10.1016/j.ttbdis.2020.101577

北岡茂男 (1971)「家畜衛生指導事業研修用テキストII-7-5 マダニ類分類・生理・生態・家畜との関係」. 日本獣医師会.

Kneubehl, A. R. et al. (2022) Amplification and sequencing of entire tick mitochondrial genomes for a phylogenomic analysis. Sci. Rep., 12: 19310. doi: 10.1038/s41598-022-23393-5

Konnai, S. et al. (2008) Establishment of a laboratory colony of taiga tick Ixodes persulcatus for tick-borne pathogen transmission studies. Jpn. J. Vet. Res., 55: 85–92. doi: 10.14943/jjvr.55.2-3.85

共同利用・共同研究拠点事業「マダニバイオバンク整備とベクターバイオロジーの新展開」(2017年度~2021年度) https: //www.obihiro.ac.jp/facility/protozoa/project/project-ticks

Levin, M. L. and Schumacher, L. B. M. (2016) Manual for maintenance of multi-host ixodid ticks in the laboratory. Exp. Appl. Acarol., 70: 343–367. doi: 10.1007/s10493-016-0084-8

Liu, J. et al. (2005) Biology of Dermacentor silvarum (Acari: Ixodidae) under laboratory conditions. Exp. Appl. Acarol., 36: 131–138. doi: 10.1007/s10493-005-1271-1

Mans, B. J. et al. (2015) Next-generation sequencing as means to retrieve tick systematic markers, with the focus on Nuttalliella namaqua (Ixodoidea: Nuttalliellidae). Ticks Tick Borne Dis., 6: 450–462. doi: 10.1016/j.ttbdis.2015.03.013

Mans, B. J. et al. (2019) Argasid and ixodid systematics: Implications for soft tick evolution and systematics, with a new argasid species list. Ticks Tick Borne Dis., 10: 219–240. doi: 10.1016/j.ttbdis.2018.09.010

Meyer, J. M. and Hill, C. A. (2014) Tick genetics, genomics, and transformation. In: Biology of Ticks volume 2. 2nd ed. (Sonenshine, D. E. and Roe, R. M. eds.). pp. 61–87. Oxford University Press.

Miller, J. R. et al. (2018) A draft genome sequence for the Ixodes scapularis cell line, ISE6. F1000Res., 7: 297. doi: 10.12688/f1000research.13635.1

Mohamed, W. M. A. et al. (2022) Comparative mitogenomics elucidates the population genetic structure of Amblyomma testudinarium in Japan and a closely related Amblyomma species in Myanmar. Evol. Appl., 15: 1062–1078. doi: 10.1111/eva.13426

Murgia, M. V. et al. (2019) Meeting the challenge of tick-borne disease control: A proposal for 1000 Ixodes genomes. Ticks Tick Borne Dis., 10: 213–218. doi: 10.1016/j.ttbdis.2018.08.009

中尾 亮 (2019) マダニ細胞の特徴とその有用性. 衛生動物, 70: 175–179. doi: 10.7601/mez.70.175

Obenchain, F. D. and Galun, R. eds. (1982) Physiology of Ticks: Current Themes in Tropical Science Volume 1. Pergamon Press. doi: 10.1016/C2013-0-03261-6

Patel, E. et al. (2016) Production and dose determination of the Infection and Treatment Method (ITM) Muguga cocktail vaccine used to control East Coast fever in cattle. Ticks Tick Borne Dis., 7: 306–314. doi: 10.1016/j.ttbdis.2015.11.006

Riabova, I. N. (1977) Feeding of imago Haemaphysalis japonica douglasi Nutt. et Warb. and Haemaphysalis concinna Koch under laboratory conditions. Med. Parazitol. Parazit. Bolezn., 46: 416–418. (In Russian)

Sadik, C. D. et al. (2022) Evaluation of Nomacopan for Treatment of Bullous Pemphigoid: A Phase 2a Nonrandomized Controlled Trial. JAMA Dermatol., 158: 641–649. doi: 10.1001/jamadermatol.2022.1156

Saito, Y. (1969) Studies on ixodid ticks. X. Haemaphysalis megaspinosa n. sp. (Ixodoidea, Ixodidae) from Kanagawa Prefecture, Japan. Acta Med. Biol., 17: 87–96.

Sonenshine, D. E. (1993) Biology of Ticks volume 1 and Volume 2, 1st ed. Oxford University Press.

Sonenshine, D. E. and Roe, R. M. eds. (2014) Biology of Ticks volume 1. 2nd ed. Oxford University Press.

Takano, A. et al. (2014) Construction of a DNA database for ticks collected in Japan: Application of molecular identification based on the mitochondrial 16S rDNA gene. Med. Entomol. Zool., 65: 13–21. doi: 10.7601/mez.65.13

Tonetti, N. et al. (2015) Genetic variation in transmission success of the Lyme borreliosis pathogen Borrelia afzelii. Ticks Tick Borne Dis., 6: 334–343. doi: 10.1016/j.ttbdis.2015.02.007

Ullmann, A. J. et al. (2005) Genome size and organization in the blacklegged tick, Ixodes scapularis and the Southern cattle tick, Boophilus microplus. Insect Mol. Biol., 14: 217–222. doi: 10.1111/j.1365-2583.2005.00551.x

Umemiya-Shirafuji, R. et al. (2017) Transovarial persistence of Babesia ovata DNA in a hard tick, Haemaphysalis longicornis, in a semi-artificial mouse skin membrane feeding system. Acta Parasitol., 62: 836–841. doi: 10.1515/ap-2017-0100

Umemiya-Shirafuji, R. et al. (2019) Hard ticks as research resources for vector biology: From genome to whole-body level. Med. Entomol. Zool., 70: 181–188. doi: 10.7601/mez.70.181

Umemiya-Shirafuji, R. et al. (2021) Data from expressed sequence tags from the organs and embryos of parthenogenetic Haemaphysalis longicornis. BMC Res. Notes, 14: 326. doi: 10.1186/s13104-021-05740-3

Umemiya-Shirafuji, R. et al. (2023) Draft genome sequence data of Haemaphysalis longicornis Oita strain. Data Brief, 49: 109352. doi: 10.1016/j.dib.2023.109352

Van Zee, J. P. and Hill, C. A. (2018) Using comparative genomics to decode the genetics of acaricide resistance. Front. Biosci. (Landmark Ed), 23: 889–908. doi: 10.2741/4623

Wint, G. R. W. et al. (2023) VectorNet: Collaborative mapping of arthropod disease vectors in Europe and surrounding areas since 2010. Euro Surveill., 28: 2200666. doi: 10.2807/1560-7917.ES.2023.28.26.2200666

Yu, Z. et al. (2010) The life cycle and biological characteristics of Dermacentor silvarum Olenev (Acari: Ixodidae) under field conditions. Vet. Parasitol., 168: 323–328. doi: 10.1016/j.vetpar.2009.11.010

Yu, Z. et al. (2022) The new Haemaphysalis longicornis genome provides insights into its requisite biological traits. Genomics, 114: 110317. doi: 10.1016/j.ygeno.2022.110317

 

付録(分類表)

Beaulieu, F. et al. (2011) Superorder Parasitiformes Reuter, 1909. In: Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Zhang, Z.-Q. ed.). Zootaxa, 3148, pp. 123–128.. Magnolia Press.

Guglielmone, A. A. et al. (2010) The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: A list of valid species names. Zootaxa, 2528: 1–28. doi: 10.11646/zootaxa.2528.1.1

高田伸弘ほか (2019) 「医ダニ学図鑑―見える分類と疫学」. 北隆館.

 


tick2

(C)2024 無断転用を禁ず