解析学百科I 古典調和解析

薮田 公三中路 貴彦佐藤 圓治田中 仁宮地 晶彦(著)

薮田 公三中路 貴彦佐藤 圓治田中 仁宮地 晶彦(著)

定価 7,150 円(本体 6,500 円+税)

A5判/400ページ
刊行日:2008年03月15日
ISBN:978-4-254-11726-4 C3341

ネット書店で購入する amazon e-hon 紀伊國屋書店 honto Honya Club Rakutenブックス くまざわ書店

書店の店頭在庫を確認する 紀伊國屋書店

内容紹介

解析学の本質的な進展に関与する分野への誘い。〔内容〕特異積分入門(薮田公三)/複素関数論と関数解析の方法によるハーディ空間の理論(中路貴彦)/フーリエ解析における可環バナッハ環(佐藤圓治)/振動積分と掛谷問題(田中仁)

編集部から

目次

第1章 特異積分入門 
1.1 準備
1.2 Fourier変換
1.3 Hilbert変換の L2有界性
1.4 Hilbert変換とそのシャープ最大関数評価
1.5 被覆定理と Hardy-Littlewoodの最大関数
1.6 シャープ最大関数と Hardy-Littlewoodの最大関数の関係
1.7 Hilbert変換の Lp有界性 (1 1.8 Caldero´n-Zygmund分解と Hilbert変換の弱 (1,1)性
1.9 Hilbert変換の最大作用素と主値の各点収束
1.10 Hilbert変換の L2有界性 (再訪)
1.11 重み付きノルム不等式
1.12 Hardy空間
1.13 BMO空間

第2章 複素関数論と関数解析の方法による Hardy空間の理論  
2.1 Hardy空間の定義
2.2 Poisson核と Cauchy核
2.3 放射状極限と Fatouの定理
2.4 Poisson-Stieltjes積分表現
2.5 Hardy空間の境界値 (I)
2.6 Blaschke積と Hpの零点集合
2.7 Hardy空間の境界値 (II)
2.8 内部関数と外部関数
2.9 H1と積分表現
2.10 Hardy空間の境界値 (III)
2.11 Hp (0 2.12 Riesz兄弟の定理
2.13 有界な線形汎関数
2.14 極値問題
2.15 端点と露点
2.16 極値問題の解
2.17 Pickの補間問題
2.18 Carlesonの補間問題 (I)
2.19 Carlesonの補間問題 (II)
2.20 半平面の Hardy空間

第3章 Fourier解析における可換 Banach環  
3.1 可換 Banach環
3.2 いくつかの可換 Banach環の Gelfand表現
3.3 A(T)におけるスペクトル合成について
3.4 スペクトル合成について.Varopoulosの方法
3.5 作用関数について

第4章 振動積分と掛谷問題  
4.1 Hardy-Littlewood最大関数と微分定理
4.2 Hardy-Littlewood-Sobolevの不等式
4.3 Fourier変換
4.4 停留位相の方法
4.5 非退化振動積分作用素
4.6 Fourier制限問題 (Tomas-Steinの定理)
4.7 Nikodym最大関数 (Wol.の定理)
4.8 掛谷集合の幾何的次元
4.9 Bochner-Riesz平均と Nikodym最大関数

索引

執筆者紹介

関連情報

ジャンル一覧

ジャンル一覧

  • Facebook
  • Twitter
  • 「愛読者の声」 ご投稿はこちら 「愛読者の声」 ご投稿はこちら
  • EBSCO eBooks
  • eBook Library